IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i11p2111-d1275773.html
   My bibliography  Save this article

Impact of Agricultural Drought on Barley and Wheat Yield: A Comparative Case Study of Spain and Germany

Author

Listed:
  • Pilar Benito-Verdugo

    (Instituto de Investigación en Agrobiotecnología, CIALE, University of Salamanca, 37185 Villamayor, Spain)

  • José Martínez-Fernández

    (Instituto de Investigación en Agrobiotecnología, CIALE, University of Salamanca, 37185 Villamayor, Spain)

  • Ángel González-Zamora

    (Instituto de Investigación en Agrobiotecnología, CIALE, University of Salamanca, 37185 Villamayor, Spain)

  • Laura Almendra-Martín

    (Instituto de Investigación en Agrobiotecnología, CIALE, University of Salamanca, 37185 Villamayor, Spain
    Center for Remote Sensing, Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL 32611, USA)

  • Jaime Gaona

    (Instituto de Investigación en Agrobiotecnología, CIALE, University of Salamanca, 37185 Villamayor, Spain)

  • Carlos Miguel Herrero-Jiménez

    (Instituto de Investigación en Agrobiotecnología, CIALE, University of Salamanca, 37185 Villamayor, Spain)

Abstract

Given the growing interest in drought impacts on crops, this work studied the impact of agricultural drought on wheat and barley during the period 2001–2020. The study was carried out in the Spanish regions of Castilla y León and Castilla–La Mancha, with approximate areas of 94,000 km 2 and 79,000 km 2 , respectively, and in the German regions of Nordrhein-Westfalen, Niedersachsen and Bayern, with approximate areas of 34,000 km 2 , 48,000 km 2 and 71,000 km 2 , respectively. These are the main cereal-growing regions of Spain and Germany. Soil moisture (SM) in the root zone was extracted from the LISFLOOD model database, and SM anomalies were used as the agricultural drought index. Gross primary productivity (GPP) and leaf area index (LAI) variables were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the month in which SM is most influential on these crop state variables was identified. Crop yields in Spain and Germany were obtained from the Spanish Ministry of Agriculture, Fisheries and Food and the German Federal Statistical Office, respectively. Agricultural drought years and their impact on cereal yields were determined on a regional scale using three approaches based on the critical month with different time periods. These approaches were the use of the critical month and the two (before or after) and the three months (before and after) around the critical month. Two different analyses were used to identify the critical month, depending on the different environmental conditions in each country. These two approaches consisted of a monthly correlation analysis between SM anomalies and cereal yield in Spain and a monthly trend analysis of SM anomalies in Germany. The results showed a dependence of crop variables on SM in spring months in both countries and in summer months in Germany. Differences were found depending on the environmental conditions. A considerable reduction in cereal yields was obtained in Spain which exceeded 30%. Similarly, a worrying sign was observed in Germany, with a positive agricultural drought trend and a yield reduction of almost 5% in cereal crops. In view of future forecasts of the negative impact of climate change on global food production, this study provides valuable information for water and agricultural management under climate change scenarios. Both in regions that are already threatened and in those that until recently were not affected, it is necessary to study adaptation measures to avoid aggravating the impact of agricultural drought on crops, which could improve water productivity and future food security.

Suggested Citation

  • Pilar Benito-Verdugo & José Martínez-Fernández & Ángel González-Zamora & Laura Almendra-Martín & Jaime Gaona & Carlos Miguel Herrero-Jiménez, 2023. "Impact of Agricultural Drought on Barley and Wheat Yield: A Comparative Case Study of Spain and Germany," Agriculture, MDPI, vol. 13(11), pages 1-20, November.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:11:p:2111-:d:1275773
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/11/2111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/11/2111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Capa-Morocho, Mirian & Ines, Amor V.M. & Baethgen, Walter E. & Rodríguez-Fonseca, Belén & Han, Eunjin & Ruiz-Ramos, Margarita, 2016. "Crop yield outlooks in the Iberian Peninsula: Connecting seasonal climate forecasts with crop simulation models," Agricultural Systems, Elsevier, vol. 149(C), pages 75-87.
    2. Gaona, Jaime & Benito-Verdugo, Pilar & Martínez-Fernández, José & González-Zamora, Ángel & Almendra-Martín, Laura & Herrero-Jiménez, Carlos Miguel, 2023. "Predictive value of soil moisture and concurrent variables in the multivariate modelling of cereal yields in water-limited environments," Agricultural Water Management, Elsevier, vol. 282(C).
    3. René Orth & Georgia Destouni, 2018. "Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Salazar, M.R. & Hook, J.E. & Garcia y Garcia, A. & Paz, J.O. & Chaves, B. & Hoogenboom, G., 2012. "Estimating irrigation water use for maize in the Southeastern USA: A modeling approach," Agricultural Water Management, Elsevier, vol. 107(C), pages 104-111.
    5. Eitzinger, J. & Stastna, M. & Zalud, Z. & Dubrovsky, M., 2003. "A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios," Agricultural Water Management, Elsevier, vol. 61(3), pages 195-217, July.
    6. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    7. Jaime Gaona & Pilar Benito-Verdugo & José Martínez-Fernández & Ángel González-Zamora & Laura Almendra-Martín & Carlos Miguel Herrero-Jiménez, 2022. "Soil Moisture Outweighs Climatic Factors in Critical Periods for Rainfed Cereal Yields: An Analysis in Spain," Agriculture, MDPI, vol. 12(4), pages 1-22, April.
    8. Qingqing Li & Yanping Cao & Shuling Miao & Xinhe Huang, 2022. "Spatiotemporal Characteristics of Drought and Wet Events and Their Impacts on Agriculture in the Yellow River Basin," Land, MDPI, vol. 11(4), pages 1-20, April.
    9. Bin He & Jianjun Wu & Aifeng Lü & Xuefeng Cui & Lei Zhou & Ming Liu & Lin Zhao, 2013. "Quantitative assessment and spatial characteristic analysis of agricultural drought risk in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 155-166, March.
    10. Martin Jung & Markus Reichstein & Philippe Ciais & Sonia I. Seneviratne & Justin Sheffield & Michael L. Goulden & Gordon Bonan & Alessandro Cescatti & Jiquan Chen & Richard de Jeu & A. Johannes Dolman, 2010. "Recent decline in the global land evapotranspiration trend due to limited moisture supply," Nature, Nature, vol. 467(7318), pages 951-954, October.
    11. Ana Iglesias & Sonia Quiroga & Marta Moneo & Luis Garrote, 2012. "From climate change impacts to the development of adaptation strategies: Challenges for agriculture in Europe," Climatic Change, Springer, vol. 112(1), pages 143-168, May.
    12. Yao, Ning & Li, Yi & Liu, Qingzhu & Zhang, Siyuan & Chen, Xinguo & Ji, Yadong & Liu, Fenggui & Pulatov, Alim & Feng, Puyu, 2022. "Response of wheat and maize growth-yields to meteorological and agricultural droughts based on standardized precipitation evapotranspiration indexes and soil moisture deficit indexes," Agricultural Water Management, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    2. Tao, Hai & Diop, Lamine & Bodian, Ansoumana & Djaman, Koffi & Ndiaye, Papa Malick & Yaseen, Zaher Mundher, 2018. "Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso," Agricultural Water Management, Elsevier, vol. 208(C), pages 140-151.
    3. Fan, Yubing & McCann, Laura M., 2017. "Farmers’ Adoption of Pressure Irrigation Systems and Scientific Scheduling Practices: An Application of Multilevel Models," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258458, Agricultural and Applied Economics Association.
    4. Abdoulaye Sy & Catherine Araujo-Bonjean & Marie-Eliette Dury & Nourddine Azzaoui & Arnaud Guillin, 2021. "An Extreme Value Mixture model to assess drought hazard in West Africa," Working Papers hal-03297023, HAL.
    5. Muhammad Aamir Khan & Alishba Tahir & Nabila Khurshid & Muhammad Iftikhar ul Husnain & Mukhtar Ahmed & Houcine Boughanmi, 2020. "Economic Effects of Climate Change-Induced Loss of Agricultural Production by 2050: A Case Study of Pakistan," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    6. Zhang, Yixiao & He, Tao & Liang, Shunlin & Zhao, Zhongguo, 2023. "A framework for estimating actual evapotranspiration through spatial heterogeneity-based machine learning approaches," Agricultural Water Management, Elsevier, vol. 289(C).
    7. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    9. Wu, Genan & Lu, Xinchen & Zhao, Wei & Cao, Ruochen & Xie, Wenqi & Wang, Liyun & Wang, Qiuhong & Song, Jiexuan & Gao, Shaobo & Li, Shenggong & Hu, Zhongmin, 2023. "The increasing contribution of greening to the terrestrial evapotranspiration in China," Ecological Modelling, Elsevier, vol. 477(C).
    10. Allen Hunt & Boris Faybishenko & Behzad Ghanbarian & Markus Egli & Fang Yu, 2020. "Predicting Water Cycle Characteristics from Percolation Theory and Observational Data," IJERPH, MDPI, vol. 17(3), pages 1-19, January.
    11. Lehmann, Niklaus & Finger, Robert & Klein, Tommy & Calanca, Pierluigi & Walter, Achim, 2013. "Adapting crop management practices to climate change: Modeling optimal solutions at the field scale," Agricultural Systems, Elsevier, vol. 117(C), pages 55-65.
    12. Kim, Daeha & Chun, Jong Ahn & Inthavong, Thavone, 2021. "Managing climate risks in a nutrient-deficient paddy rice field using seasonal climate forecasts and AquaCrop," Agricultural Water Management, Elsevier, vol. 256(C).
    13. Yu, Xingjiao & Qian, Long & Wang, Wen’e & Hu, Xiaotao & Dong, Jianhua & Pi, Yingying & Fan, Kai, 2023. "Comprehensive evaluation of terrestrial evapotranspiration from different models under extreme condition over conterminous United States," Agricultural Water Management, Elsevier, vol. 289(C).
    14. El Chami, D. & Daccache, A., 2015. "Assessing sustainability of winter wheat production under climate change scenarios in a humid climate — An integrated modelling framework," Agricultural Systems, Elsevier, vol. 140(C), pages 19-25.
    15. Mohammad Bannayan & Ehsan Eyshi Rezaei, 2014. "Future production of rainfed wheat in Iran (Khorasan province): climate change scenario analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(2), pages 211-227, February.
    16. Wiréhn, Lotten, 2018. "Nordic agriculture under climate change: A systematic review of challenges, opportunities and adaptation strategies for crop production," Land Use Policy, Elsevier, vol. 77(C), pages 63-74.
    17. Xiuhua Cai & Wenqian Zhang & Cunjie Zhang & Qiang Zhang & Jingli Sun & Chen Cheng & Wenjie Fan & Ying Yu & Xiaoling Liu, 2022. "Identification and Spatial-Temporal Variation Characteristics of Regional Drought Processes in China," Land, MDPI, vol. 11(6), pages 1-21, June.
    18. Zhou, Li & Wang, Yu & Jia, Qingyu & Li, Rongping & Zhou, Mengzi & Zhou, Guangsheng, 2019. "Evapotranspiration over a rainfed maize field in northeast China: How are relationships between the environment and terrestrial evapotranspiration mediated by leaf area?," Agricultural Water Management, Elsevier, vol. 221(C), pages 538-546.
    19. Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2018. "A Ricardian analysis of the impact of climate change on Italian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 57-79.
    20. Liu, Pengzhao & Fan, Zhen & Yan, Zinan & Ren, Xiaolong & Zhao, Xining & Zhang, Jianjun & Chen, Xiaoli, 2024. "Evaluation of N nutrition and optimal fertilizer rate for ridge-furrow mulched maize based on critical N dilution curve under different water conditions," Agricultural Water Management, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:11:p:2111-:d:1275773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.