IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06013-7.html
   My bibliography  Save this article

Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe

Author

Listed:
  • René Orth

    (Bolin Centre for Climate Research, Stockholm University
    Max Planck Institute for Biogeochemistry)

  • Georgia Destouni

    (Bolin Centre for Climate Research, Stockholm University)

Abstract

Drought comprehensively affects different interlinked aspects of the terrestrial water cycle, which have so far been mostly investigated without direct comparison. Resolving the partitioning of water deficit during drought into blue-water runoff and green-water evapotranspiration fluxes is critical, as anomalies in these fluxes threaten different associated societal sectors and ecosystems. Here, we analyze the propagation of drought-inducing precipitation deficits through soil moisture reductions to their impacts on blue and green-water fluxes by use of comprehensive multi-decadal data from > 400 near-natural catchments along a steep climate gradient across Europe. We show that soil-moisture drought reduces runoff stronger and faster than it reduces evapotranspiration over the entire continent. While runoff responds within weeks, evapotranspiration can be unaffected for months. Understanding these drought-impact pathways across blue and green-water fluxes and geospheres is essential for ensuring food and water security, and developing early-warning and adaptation systems in support of society and ecosystems.

Suggested Citation

  • René Orth & Georgia Destouni, 2018. "Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06013-7
    DOI: 10.1038/s41467-018-06013-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06013-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06013-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pilar Benito-Verdugo & José Martínez-Fernández & Ángel González-Zamora & Laura Almendra-Martín & Jaime Gaona & Carlos Miguel Herrero-Jiménez, 2023. "Impact of Agricultural Drought on Barley and Wheat Yield: A Comparative Case Study of Spain and Germany," Agriculture, MDPI, vol. 13(11), pages 1-20, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06013-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.