IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v203y2018icp20-29.html
   My bibliography  Save this article

Sensor-based irrigation management of soilless basil using a new smart irrigation system: Effects of set-point on plant physiological responses and crop performance

Author

Listed:
  • Montesano, Francesco Fabiano
  • van Iersel, Marc W.
  • Boari, Francesca
  • Cantore, Vito
  • D’Amato, Giulio
  • Parente, Angelo

Abstract

Dielectric moisture sensors are particularly suitable for irrigation management in greenhouse soilless production. Identifying the practical effects of substrate water content set-points on crop performance is crucial for successful sensor-based irrigation. We designed and constructed a prototype cloud-connected system for wireless, sensor-based irrigation management, and tested it on basil, grown in a perlite-coco (1:1 v:v) soilless substrate under greenhouse conditions. Dielectric moisture/salinity sensors (GS3, Decagon Devices, Pullman – WA, USA) were used. The study, with two subsequent experiments, assessed i) the effects of a progressive decline in substrate water availability, corresponding to moisture levels from water holding capacity to ≈0.10 m3 m−3, on the gas exchange parameters and leaf water status of basil plants; ii) the short-term recovery response of plants when re-watered after substrate water content has decreased to different levels; iii) the effects of different irrigation set-points (0.40, 0.30 and 0.20 m3 m−3) and leaching rates (≈8% or ≈18%) on the basil crop performance over a complete growing cycle. No physiological stress responses were observed on basil plants when moisture level was higher than approximately 0.20 m3 m−3, while plants showed drought symptoms at approximately 0.17 m3 m−3, corresponding to a substrate matric potential and hydraulic conductivity of −300 hPa and 0.0005 cm day−1, respectively. Photosynthesis and leaf water potential recovered to values similar to non- stress conditions following a short drought (with moisture level as low as ≈0.10 m3 m−3). Basil growth was similar when plants were grown with irrigation set-points of 0.40, 0.30 or 0.20 m3 m−3 for the complete growing cycle. Fresh weight tended to increase when a higher leaching rate was used, probably because leaching lowered substrate EC. Water use efficiency (basil fresh weight/unit water used) was similar at different irrigation set-points and leaching rates. Our results indicate that the use of a wireless sensor network for real-time sensing of substrate water status, combined with precise information on the effects of water availability levels on plants, is an effective tool for precision irrigation management of greenhouse soilless basil.

Suggested Citation

  • Montesano, Francesco Fabiano & van Iersel, Marc W. & Boari, Francesca & Cantore, Vito & D’Amato, Giulio & Parente, Angelo, 2018. "Sensor-based irrigation management of soilless basil using a new smart irrigation system: Effects of set-point on plant physiological responses and crop performance," Agricultural Water Management, Elsevier, vol. 203(C), pages 20-29.
  • Handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:20-29
    DOI: 10.1016/j.agwat.2018.02.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418301057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.02.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valdés, R. & Ochoa, J. & Franco, J.A. & Sánchez-Blanco, M.J. & Bañón, S., 2015. "Saline irrigation scheduling for potted geranium based on soil electrical conductivity and moisture sensors," Agricultural Water Management, Elsevier, vol. 149(C), pages 123-130.
    2. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    3. Navarro-Hellín, H. & Torres-Sánchez, R. & Soto-Valles, F. & Albaladejo-Pérez, C. & López-Riquelme, J.A. & Domingo-Miguel, R., 2015. "A wireless sensors architecture for efficient irrigation water management," Agricultural Water Management, Elsevier, vol. 151(C), pages 64-74.
    4. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Shengping & Tan, Deshui & Wu, Xueping & Degré, Aurore & Long, Huaiyu & Zhang, Shuxiang & Lu, Jinjing & Gao, Lili & Zheng, Fengjun & Liu, Xiaotong & Liang, Guopeng, 2021. "Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3–-N distributions," Agricultural Water Management, Elsevier, vol. 251(C).
    2. M. A. Abdelzaher & Mohamed M. Awad, 2022. "Sustainable Development Goals for the Circular Economy and the Water-Food Nexus: Full Implementation of New Drip Irrigation Technologies in Upper Egypt," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    3. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    4. Roberto S. Velazquez-Gonzalez & Adrian L. Garcia-Garcia & Elsa Ventura-Zapata & Jose Dolores Oscar Barceinas-Sanchez & Julio C. Sosa-Savedra, 2022. "A Review on Hydroponics and the Technologies Associated for Medium- and Small-Scale Operations," Agriculture, MDPI, vol. 12(5), pages 1-21, April.
    5. Nam, Suyun & Kang, Seonghwan & Kim, Jongyun, 2020. "Maintaining a constant soil moisture level can enhance the growth and phenolic content of sweet basil better than fluctuating irrigation," Agricultural Water Management, Elsevier, vol. 238(C).
    6. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    7. Massa, Daniele & Magán, Juan José & Montesano, Francesco Fabiano & Tzortzakis, Nikolaos, 2020. "Minimizing water and nutrient losses from soilless cropping in southern Europe," Agricultural Water Management, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2022. "Changing occurrence of crop water surplus or deficit and the impact of irrigation: An analysis highlighting consequences for rice production in Bangladesh," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    3. Molle, François & Tanouti, Oumaima, 2017. "Squaring the circle: Agricultural intensification vs. water conservation in Morocco," Agricultural Water Management, Elsevier, vol. 192(C), pages 170-179.
    4. Veisi, Hadi & Deihimfard, Reza & Shahmohammadi, Alireza & Hydarzadeh, Yasoub, 2022. "Application of the analytic hierarchy process (AHP) in a multi-criteria selection of agricultural irrigation systems," Agricultural Water Management, Elsevier, vol. 267(C).
    5. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Tapsuwan, Sorada & Peña-Arancibia, Jorge L. & Lazarow, Neil & Albisetti, Melisa & Zheng, Hongxing & Rojas, Rodrigo & Torres-Alferez, Vianney & Chiew, Francis H.S. & Hopkins, Richard & Penton, David J., 2022. "A benefit cost analysis of strategic and operational management options for water management in hyper-arid southern Peru," Agricultural Water Management, Elsevier, vol. 265(C).
    7. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    8. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    9. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    10. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    11. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    12. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    13. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    14. Marjan Aziz & Madeeha Khan & Naveeda Anjum & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim & Siva K. Balasundram & Muhammad Aleem, 2022. "Scientific Irrigation Scheduling for Sustainable Production in Olive Groves," Agriculture, MDPI, vol. 12(4), pages 1-14, April.
    15. Chen, Dan & Webber, Michael & Chen, Jing & Luo, Zhaohui, 2011. "Emergy evaluation perspectives of an irrigation improvement project proposal in China," Ecological Economics, Elsevier, vol. 70(11), pages 2154-2162, September.
    16. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    17. Incrocci, Luca & Marzialetti, Paolo & Incrocci, Giorgio & Di Vita, Andrea & Balendonck, Jos & Bibbiani, Carlo & Spagnol, Serafino & Pardossi, Alberto, 2019. "Sensor-based management of container nursery crops irrigated with fresh or saline water," Agricultural Water Management, Elsevier, vol. 213(C), pages 49-61.
    18. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    19. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    20. Ramesh Srivastava & Sheelabhadra Mohanty & Ramlal Singandhuppe & Rajiv Mohanty & Madhu Behera & Lala Ray & Deepika Sahoo, 2010. "Feasibility Evaluation of Pressurized Irrigation in Canal Commands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3017-3032, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:20-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.