IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2022i1p58-d1014191.html
   My bibliography  Save this article

Different Response of Soil Microbial Carbon Use Efficiency in Compound of Feldspathic Sandstone and Sand

Author

Listed:
  • Yao Zhang

    (Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural Resources, Xi’an 710075, China
    College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    These authors contributed equally to this work.)

  • Junqi Wang

    (College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    These authors contributed equally to this work.)

  • Lan Chen

    (College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China)

  • Sha Zhou

    (College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China)

  • Lu Zhang

    (Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural Resources, Xi’an 710075, China)

  • Fazhu Zhao

    (Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural Resources, Xi’an 710075, China
    College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China)

Abstract

The stoichiometry of efficient soil microbial carbon use is a sensitive index for measuring changes in soil quality and plays a crucial role in research on ecological stoichiometry in the soil nutrient cycle. To further understand the effect of feldspathic sandstone and sand compound ratios on microbial carbon use efficiency (CUE), we simulated the field conditions of the feldspathic sandstone-sand compound layer in the Mu Us sandy land and analyzed the soil C:N:P ratio, microbial biomass, extracellular enzyme activity, and microbial carbon use efficiency in soils with different compound ratios. The results demonstrated that an increase in the feldspathic sandstone content had insignificant effects on the soil C:N:P ratio. The maximum values for microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) were observed at compound ratios of 1:5 and 1:2, respectively. Calculations of microbial carbon use efficiency and vector analysis revealed that the microbial carbon use efficiency increased as the feldspathic sandstone content increased, P limitation existed in all compound soils, and soil with a 1:1 compound ratio may be substantially less limited. In conclusion, our research indicated that adding feldspathic sandstone to sand improved soil quality, and the compound ratio affected soil microorganisms; nevertheless, it did not significantly change soil nutrient restriction. Our study provides a theoretical basis for the development and utilization of desert land resources.

Suggested Citation

  • Yao Zhang & Junqi Wang & Lan Chen & Sha Zhou & Lu Zhang & Fazhu Zhao, 2022. "Different Response of Soil Microbial Carbon Use Efficiency in Compound of Feldspathic Sandstone and Sand," Agriculture, MDPI, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:gam:jagris:v:13:y:2022:i:1:p:58-:d:1014191
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/1/58/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/1/58/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert L. Sinsabaugh & Brian H. Hill & Jennifer J. Follstad Shah, 2009. "Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment," Nature, Nature, vol. 462(7274), pages 795-798, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyuan Hu & Jiating Li & Kangwei Shi & Guangqian Ren & Zhicong Dai & Jianfan Sun & Xiaojun Zheng & Yiwen Zhou & Jiaqi Zhang & Guanlin Li & Daolin Du, 2021. "Effects of Canada Goldenrod Invasion on Soil Extracellular Enzyme Activities and Ecoenzymatic Stoichiometry," Sustainability, MDPI, vol. 13(7), pages 1-13, March.
    2. C. Pérez-Brandán & J. Huidobro & M. Galván & S. Vargas-Gil & J.M. Meriles, 2016. "Relationship between microbial functions and community structure following agricultural intensification in South American Chaco," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(7), pages 321-328.
    3. Minyoung Kwon & Guanlin Li & Heejae Jo & Gwang-Jung Kim & Haegeun Chung & Yowhan Son, 2024. "Changes in Soil Microbial Communities Associated with Pinus densiflora and Larix kaempferi Seedlings under Extreme Warming and Precipitation Manipulation," Sustainability, MDPI, vol. 16(11), pages 1-14, May.
    4. Meixia Liu & Menglu Wang & Congwei Sun & Hui Wu & Xueqing Zhao & Enke Liu & Wenyi Dong & Meiling Yan, 2023. "Self-Regulation of Soil Enzyme Activity and Stoichiometry under Nitrogen Addition and Plastic Film Mulching in the Loess Plateau Area, Northwest China," Agriculture, MDPI, vol. 13(5), pages 1-11, April.
    5. Qing Zhao & Jie Tang & Zhaoyang Li & Wei Yang & Yucong Duan, 2018. "The Influence of Soil Physico-Chemical Properties and Enzyme Activities on Soil Quality of Saline-Alkali Agroecosystems in Western Jilin Province, China," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    6. Susheel Bhanu Busi & Massimo Bourquin & Stilianos Fodelianakis & Grégoire Michoud & Tyler J. Kohler & Hannes Peter & Paraskevi Pramateftaki & Michail Styllas & Matteo Tolosano & Vincent Staercke & Mar, 2022. "Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Yanyu Song & Changchun Song & Jiusheng Ren & Xiuyan Ma & Wenwen Tan & Xianwei Wang & Jinli Gao & Aixin Hou, 2019. "Short-Term Response of the Soil Microbial Abundances and Enzyme Activities to Experimental Warming in a Boreal Peatland in Northeast China," Sustainability, MDPI, vol. 11(3), pages 1-16, January.
    8. Jörg Schnecker & Birgit Wild & Florian Hofhansl & Ricardo J Eloy Alves & Jiří Bárta & Petr Čapek & Lucia Fuchslueger & Norman Gentsch & Antje Gittel & Georg Guggenberger & Angelika Hofer & Sandra Kien, 2014. "Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated Arctic Soils," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    9. Julian Cardenas & Fernando Santa & Eva Kaštovská, 2021. "The Exudation of Surplus Products Links Plant Functional Traits and Plant-Microbial Stoichiometry," Land, MDPI, vol. 10(8), pages 1-16, August.
    10. Daniela Figueroa & Patricia Ortega-Fernández & Thalita F. Abbruzzini & Anaitzi Rivero-Villlar & Francisco Galindo & Bruno Chavez-Vergara & Jorge D. Etchevers & Julio Campo, 2020. "Effects of Land Use Change from Natural Forest to Livestock on Soil C, N and P Dynamics along a Rainfall Gradient in Mexico," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    11. Avijit Ghosh & Suheel Ahmad & Amit K. Singh & Pramod Jha & Rajendra Kumar Yadav & Raimundo Jiménez Ballesta & Sheeraz Saleem Bhatt & Nagaratna Biradar & Nazim Hamid Mir, 2024. "Soil Carbon Storage, Enzymatic Stoichiometry, and Ecosystem Functions in Indian Himalayan Legume-Diversified Pastures," Land, MDPI, vol. 13(4), pages 1-17, April.
    12. Hannes Peter & Irene Ylla & Cristian Gudasz & Anna M Romaní & Sergi Sabater & Lars J Tranvik, 2011. "Multifunctionality and Diversity in Bacterial Biofilms," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-8, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2022:i:1:p:58-:d:1014191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.