IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i4p452-d1369030.html
   My bibliography  Save this article

Soil Carbon Storage, Enzymatic Stoichiometry, and Ecosystem Functions in Indian Himalayan Legume-Diversified Pastures

Author

Listed:
  • Avijit Ghosh

    (ICAR-IGFRI, Jhansi 284 003, India)

  • Suheel Ahmad

    (Hilly Regional Research Station, ICAR-IGFRI, Srinagar 190 005, India)

  • Amit K. Singh

    (ICAR-IGFRI, Jhansi 284 003, India)

  • Pramod Jha

    (ICAR-IISS, Bhopal 462 038, India)

  • Rajendra Kumar Yadav

    (Department of Soil Science, Agriculture University, Kota 324 001, India)

  • Raimundo Jiménez Ballesta

    (Department of Geology and Geochemistry, Autónoma University of Madrid, 28049 Madrid, Spain)

  • Sheeraz Saleem Bhatt

    (Hilly Regional Research Station, ICAR-IGFRI, Srinagar 190 005, India)

  • Nagaratna Biradar

    (Southern Regional Research Station, ICAR-IGFRI, Dharwad 580 005, India)

  • Nazim Hamid Mir

    (Hilly Regional Research Station, ICAR-IGFRI, Srinagar 190 005, India)

Abstract

The influences of legume diversification on soil carbon (C) pools and sequestration, particularly in Himalayan pastureland, remain poorly understood. Moreover, the impact of legume diversification activities and the stoichiometry of soil enzymes in C biogeochemistry at the ecosystem level remains largely overlooked. The purpose of this study is to investigate the influences of legume diversification on activities and the stoichiometry of soil enzymes and their control of C sequestration in pasturelands. Four experimental fertilized species combinations, namely, SG (50% Festuca arundinacea + 50% Dactylis glomerata ), SGL1 (25% Festuca arundinacea + 25% Dactylis glomerata + 50% Onobrychis viciifolia ), SGL2 (25% Festuca arundinacea + 25% Dactylis glomerata + 50% Trifolium pratense ), SGL12 (25% Festuca arundinacea + 25% Dactylis glomerata + 25% Onobrychis viciifolia + 25% Trifolium pratense ), and natural pasture (NG) were compared. Soils under SGL1, SGL2, and SG12 had ~18, 36, and 22% greater soil C than SG, respectively. Among the pastures with fertilization, the C mineralization was suppressed by legume diversification. C sequestration under SGL1, SGL2, and SG12 was ~27, 22, and 38% higher than SG, respectively, at the 0–30 cm soil layer. The ratios of DHA are as follows: for PhOX and DHA, PerOX significantly decreased with an increasing grass–legume mixture, suggesting greater C sequestration. PCA analysis revealed that C sequestration under legume diversification and enzymatic stoichiometry had an indirect but substantial impact on C sequestration. The increasing C sequestration under SGL12 was complemented by higher productivity. Data suggested that increasing legumes in pastureland might greatly enhance ecosystem functions such as soil C storage, productivity, ecorestoration efficiency, and biological activity in Indian Himalayan pastureland.

Suggested Citation

  • Avijit Ghosh & Suheel Ahmad & Amit K. Singh & Pramod Jha & Rajendra Kumar Yadav & Raimundo Jiménez Ballesta & Sheeraz Saleem Bhatt & Nagaratna Biradar & Nazim Hamid Mir, 2024. "Soil Carbon Storage, Enzymatic Stoichiometry, and Ecosystem Functions in Indian Himalayan Legume-Diversified Pastures," Land, MDPI, vol. 13(4), pages 1-17, April.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:452-:d:1369030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/4/452/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/4/452/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert L. Sinsabaugh & Brian H. Hill & Jennifer J. Follstad Shah, 2009. "Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment," Nature, Nature, vol. 462(7274), pages 795-798, December.
    2. Philip K. Thornton & Mario Herrero, 2015. "Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa," Nature Climate Change, Nature, vol. 5(9), pages 830-836, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyuan Hu & Jiating Li & Kangwei Shi & Guangqian Ren & Zhicong Dai & Jianfan Sun & Xiaojun Zheng & Yiwen Zhou & Jiaqi Zhang & Guanlin Li & Daolin Du, 2021. "Effects of Canada Goldenrod Invasion on Soil Extracellular Enzyme Activities and Ecoenzymatic Stoichiometry," Sustainability, MDPI, vol. 13(7), pages 1-13, March.
    2. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    3. Priyanka Parvathi, 2018. "Does mixed crop‐livestock farming lead to less diversified diets among smallholders? Evidence from Laos," Agricultural Economics, International Association of Agricultural Economists, vol. 49(4), pages 497-509, July.
    4. Chandni Singh & James Ford & Debora Ley & Amir Bazaz & Aromar Revi, 2020. "Assessing the feasibility of adaptation options: methodological advancements and directions for climate adaptation research and practice," Climatic Change, Springer, vol. 162(2), pages 255-277, September.
    5. Leonhard Klinck & Kingsley K. Ayisi & Johannes Isselstein, 2022. "Drought-Induced Challenges and Different Responses by Smallholder and Semicommercial Livestock Farmers in Semiarid Limpopo, South Africa—An Indicator-Based Assessment," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
    6. William Adzawla & Abou Kane, 2018. "Gender Perspectives Of The Determinants Of Climate Adaptation: The Case Of Livelihood Diversification In Northern Ghana [Une Approche Genrée des déterminants de l'adaptation au climat: le cas de la," Post-Print hal-01929070, HAL.
    7. Tang, Kai, 2024. "Agricultural adaptation to the environmental and social consequences of climate change in mixed farming systems: Evidence from North Xinjiang, China," Agricultural Systems, Elsevier, vol. 217(C).
    8. Jikun Huang & Jinxia Wang & Dang Kim Khoi & Herb Plunkett & Ying Xu & Christopher Findlay, 2021. "Rural Adaptation to Climate Change: New Findings and Existing Knowledge," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 18(2), pages 1-16, December.
    9. Adenle, Ademola A. & Ford, James D. & Morton, John & Twomlow, Stephen & Alverson, Keith & Cattaneo, Andrea & Cervigni, Rafaello & Kurukulasuriya, Pradeep & Huq, Saleemul & Helfgott, Ariella & Ebinger,, 2017. "Managing Climate Change Risks in Africa - A Global Perspective," Ecological Economics, Elsevier, vol. 141(C), pages 190-201.
    10. Admire Mutsa Nyamwanza & Mark George New & Mariko Fujisawa & Peter Johnston & Akeel Hajat, 2017. "Contributions of decadal climate information in agriculture and food systems in east and southern Africa," Climatic Change, Springer, vol. 143(1), pages 115-128, July.
    11. Netshipale, A.J. & Raidimi, E.N. & Mashiloane, M.L. & de Boer, I.J.M. & Oosting, S.J., 2022. "Farming system diversity and its drivers in land reform farms of the Waterberg District, South Africa," Land Use Policy, Elsevier, vol. 117(C).
    12. Camila Bonilla-Cedrez & Peter Steward & Todd S. Rosenstock & Philip Thornton & Jacobo Arango & Martin Kropff & Julian Ramirez-Villegas, 2023. "Priority areas for investment in more sustainable and climate-resilient livestock systems," Nature Sustainability, Nature, vol. 6(10), pages 1279-1286, October.
    13. Muhammad Faisal & Azhar Abbas & Yi Cai & Abdelrahman Ali & Muhammad Amir Shahzad & Shoaib Akhtar & Muhammad Haseeb Raza & Muhammad Arslan Ajmal & Chunping Xia & Syed Abdul Sattar & Zahira Batool, 2021. "Perceptions, Vulnerability and Adaptation Strategies for Mitigating Climate Change Effects among Small Livestock Herders in Punjab, Pakistan," IJERPH, MDPI, vol. 18(20), pages 1-21, October.
    14. Wenxiang Wu & Xuesong Du & Zhiwei Qin & Qingrong Liu & Fujing Pan, 2024. "Integrated Rice-Snail-Crayfish Farming System Shapes Soil Microbial Community by Enhancing pH and Microbial Biomass in South Subtropical China," Agriculture, MDPI, vol. 14(12), pages 1-20, November.
    15. Makame Omar Makame & Sheona E Shackleton & Walter Leal Filho, 2023. "Coping with and adapting to climate and non-climate stressors within the small-scale farming, fishing and seaweed growing sectors, Zanzibar," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3377-3399, April.
    16. Thomas, Dean T. & Moore, Andrew D. & Bell, Lindsay W. & Webb, Nicholas P., 2018. "Ground cover, erosion risk and production implications of targeted management practices in Australian mixed farming systems: Lessons from the Grain and Graze program," Agricultural Systems, Elsevier, vol. 162(C), pages 123-135.
    17. Lungu, Harad Chuma, 2019. "Determinants of climate smart agricultural technology adoption in the Northern Province of Zambia," Research Theses 334754, Collaborative Masters Program in Agricultural and Applied Economics.
    18. C. Pérez-Brandán & J. Huidobro & M. Galván & S. Vargas-Gil & J.M. Meriles, 2016. "Relationship between microbial functions and community structure following agricultural intensification in South American Chaco," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(7), pages 321-328.
    19. Minyoung Kwon & Guanlin Li & Heejae Jo & Gwang-Jung Kim & Haegeun Chung & Yowhan Son, 2024. "Changes in Soil Microbial Communities Associated with Pinus densiflora and Larix kaempferi Seedlings under Extreme Warming and Precipitation Manipulation," Sustainability, MDPI, vol. 16(11), pages 1-14, May.
    20. Kemen G. Austin & Robert H. Beach & Daniel Lapidus & Marwa E. Salem & Naomi J. Taylor & Mads Knudsen & Noel Ujeneza, 2020. "Impacts of Climate Change on the Potential Productivity of Eleven Staple Crops in Rwanda," Sustainability, MDPI, vol. 12(10), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:452-:d:1369030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.