IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2022i1p52-d1013484.html
   My bibliography  Save this article

Feature Extraction on the Difference of Plant Stem Structure Based on Ultrasound Energy

Author

Listed:
  • Danju Lv

    (College of big data and intelligent engineering, Southwest Forestry University, Kunming 650224, China)

  • Jiali Zi

    (College of big data and intelligent engineering, Southwest Forestry University, Kunming 650224, China)

  • Xin Huang

    (College of big data and intelligent engineering, Southwest Forestry University, Kunming 650224, China)

  • Mingyuan Gao

    (College of big data and intelligent engineering, Southwest Forestry University, Kunming 650224, China)

  • Rui Xi

    (College of big data and intelligent engineering, Southwest Forestry University, Kunming 650224, China)

  • Wei Li

    (College of big data and intelligent engineering, Southwest Forestry University, Kunming 650224, China)

  • Ziqian Wang

    (College of big data and intelligent engineering, Southwest Forestry University, Kunming 650224, China)

Abstract

Plant growth is closely related to the structure of its stem. The ultrasonic echo signal of the plant stem carries much information on the stem structure, providing an effective means for analyzing stem structure characteristics. In this paper, we proposed to extract energy features of ultrasonic echo signals to study the structure of the plant stem. Firstly, it is found that there are obvious different ultrasonic energy changes in different kinds of plant stems whether in the time domain or the frequency domain. Then, we proposed a feature extraction method, density energy feature, to better depict the interspecific differences of the plant stems. In order to evaluate the extracted 24-dimensional features of the ultrasound, the information gain method and correlation evaluation method were adopted to compute their contributions. The results showed that the mean density, an improved feature, was the most significant contributing feature in the four living plant stems. Finally, the top three features in the feature contribution were selected, and each two of them composed as 2-D feature maps, which have significant differentiation of the stem species, especially for grass and wood stems. The above research shows that the ultrasonic energy features of plant stems can provide a new perspective for the study of distinguishing the structural differences among plant stem species.

Suggested Citation

  • Danju Lv & Jiali Zi & Xin Huang & Mingyuan Gao & Rui Xi & Wei Li & Ziqian Wang, 2022. "Feature Extraction on the Difference of Plant Stem Structure Based on Ultrasound Energy," Agriculture, MDPI, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:gam:jagris:v:13:y:2022:i:1:p:52-:d:1013484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/1/52/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/1/52/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingxiong Ou & Tianhang Hu & Mingshuo Hu & Shuai Yang & Weidong Jia & Ming Wang & Li Jiang & Xiaowen Wang & Xiang Dong, 2022. "Experiment of Canopy Leaf Area Density Estimation Method Based on Ultrasonic Echo Signal," Agriculture, MDPI, vol. 12(10), pages 1-14, September.
    2. Brendan Choat & Steven Jansen & Tim J. Brodribb & Hervé Cochard & Sylvain Delzon & Radika Bhaskar & Sandra J. Bucci & Taylor S. Feild & Sean M. Gleason & Uwe G. Hacke & Anna L. Jacobsen & Frederic Len, 2012. "Global convergence in the vulnerability of forests to drought," Nature, Nature, vol. 491(7426), pages 752-755, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krishna, Dyvavani K. & Watham, Taibanganba & Padalia, Hitendra & Srinet, Ritika & Nandy, Subrata, 2023. "Improved gross primary productivity estimation using semi empirical (PRELES) model for moist Indian sal forest," Ecological Modelling, Elsevier, vol. 475(C).
    2. Rada Matić & Srđan Stamenković & Zorica Popović & Milena Stefanović & Vera Vidaković & Miroslava Smiljanić & Srđan Bojović, 2015. "Tree responses, tolerance and acclimation to stress: Does current research depend on the cultivation status of studied species?," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1209-1222, November.
    3. Alejandro Martínez-Calvo & Matthew D. Biviano & Anneline H. Christensen & Eleni Katifori & Kaare H. Jensen & Miguel Ruiz-García, 2024. "The fluidic memristor as a collective phenomenon in elastohydrodynamic networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Xianliang Zhang & Tim Rademacher & Hongyan Liu & Lu Wang & Rubén D. Manzanedo, 2023. "Fading regulation of diurnal temperature ranges on drought-induced growth loss for drought-tolerant tree species," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Jing Zhang & Xiaoan Zuo & Peng Lv, 2023. "Effects of Grazing, Extreme Drought, Extreme Rainfall and Nitrogen Addition on Vegetation Characteristics and Productivity of Semiarid Grassland," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    6. Wenzel Kröber & Shouren Zhang & Merten Ehmig & Helge Bruelheide, 2014. "Linking Xylem Hydraulic Conductivity and Vulnerability to the Leaf Economics Spectrum—A Cross-Species Study of 39 Evergreen and Deciduous Broadleaved Subtropical Tree Species," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-24, November.
    7. Margot Neyret & Gaëtane Provost & Andrea Larissa Boesing & Florian D. Schneider & Dennis Baulechner & Joana Bergmann & Franciska T. Vries & Anna Maria Fiore-Donno & Stefan Geisen & Kezia Goldmann & An, 2024. "A slow-fast trait continuum at the whole community level in relation to land-use intensification," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    8. Guo, Youzheng & Ma, Yingjun & Ding, Changjun & Di, Nan & Liu, Yang & Tan, Jianbiao & Zhang, Shusen & Yu, Weichen & Gao, Guixi & Duan, Jie & Xi, Benye & Li, Ximeng, 2023. "Plant hydraulics provide guidance for irrigation management in mature polar plantation," Agricultural Water Management, Elsevier, vol. 275(C).
    9. Justin T. Maxwell & Grant L. Harley & Scott M. Robeson, 2016. "On the declining relationship between tree growth and climate in the Midwest United States: the fading drought signal," Climatic Change, Springer, vol. 138(1), pages 127-142, September.
    10. Laura Myrtiá Faní Stratópoulos & Chi Zhang & Karl-Heinz Häberle & Stephan Pauleit & Swantje Duthweiler & Hans Pretzsch & Thomas Rötzer, 2019. "Effects of Drought on the Phenology, Growth, and Morphological Development of Three Urban Tree Species and Cultivars," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    11. Minxia Zhang & Shulin Chen & Hong Jiang & Yong Lin & Jinmeng Zhang & Xinzhang Song & Guomo Zhou, 2019. "Water-Use Characteristics and Physiological Response of Moso Bamboo to Flash Droughts," IJERPH, MDPI, vol. 16(12), pages 1-18, June.
    12. Ameztegui, Aitor & Cabon, Antoine & De Cáceres, Miquel & Coll, Lluís, 2017. "Managing stand density to enhance the adaptability of Scots pine stands to climate change: A modelling approach," Ecological Modelling, Elsevier, vol. 356(C), pages 141-150.
    13. Peipei Xu & Tao Zhou & Chuixiang Yi & Hui Luo & Xiang Zhao & Wei Fang & Shan Gao & Xia Liu, 2018. "Impacts of Water Stress on Forest Recovery and Its Interaction with Canopy Height," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
    14. Daniel S. Maynard & Lalasia Bialic-Murphy & Constantin M. Zohner & Colin Averill & Johan Hoogen & Haozhi Ma & Lidong Mo & Gabriel Reuben Smith & Alicia T. R. Acosta & Isabelle Aubin & Erika Berenguer , 2022. "Global relationships in tree functional traits," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Liu, Qiuyu & Peng, Changhui & Schneider, Robert & Cyr, Dominic & Liu, Zelin & Zhou, Xiaolu & Kneeshaw, Daniel, 2021. "TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    16. Maristela Volpato & Caio F. Andrade & Elton L. Silva & Maria L. Barbosa & Melina D. Andrade & Pedro. V. Rocha & Rafael C. Delgado & Paulo E. Teodoro & Carlos A. Silva & Marcos G. Pereira, 2023. "Fire foci and their spatiotemporal relations to weather variables and land uses in the state of Mato Grosso," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12419-12438, November.
    17. Chunyang Liu & Chao Liu & Qianqian Sun & Tianyang Chen & Ya Fan, 2022. "Vegetation Dynamics and Climate from A Perspective of Lag-Effect: A Study Case in Loess Plateau, China," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    18. Zhonghua He & Hong Liang & Zhaohui Yang & Fasu Huang & Xinbo Zeng, 2018. "Water system characteristics of Karst river basins in South China and their driving mechanisms of hydrological drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1155-1178, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2022:i:1:p:52-:d:1013484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.