IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i7p899-d843858.html
   My bibliography  Save this article

Predicting the Feed Intake of Cattle Based on Jaw Movement Using a Triaxial Accelerometer

Author

Listed:
  • Luyu Ding

    (Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China)

  • Yang Lv

    (Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China)

  • Ruixiang Jiang

    (Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China)

  • Wenjie Zhao

    (Solway Online (Beijing) New Energy Technology Co., Ltd., Beijing 100191, China)

  • Qifeng Li

    (Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China)

  • Baozhu Yang

    (Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China)

  • Ligen Yu

    (Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China)

  • Weihong Ma

    (Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China)

  • Ronghua Gao

    (Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China)

  • Qinyang Yu

    (Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China)

Abstract

The use of an accelerometer is considered as a promising method for the automatic measurement of the feeding behavior or feed intake of cattle, with great significance in facilitating daily management. To address further need for commercial use, an efficient classification algorithm at a low sample frequency is needed to reduce the amount of recorded data to increase the battery life of the monitoring device, and a high-precision model needs to be developed to predict feed intake on the basis of feeding behavior. Accelerograms for the jaw movement and feed intake of 13 mid-lactating cows were collected during feeding with a sampling frequency of 1 Hz at three different positions: the nasolabial levator muscle (P1), the right masseter muscle (P2), and the left lower lip muscle (P3). A behavior identification framework was developed to recognize jaw movements including ingesting, chewing and ingesting–chewing through extreme gradient boosting (XGB) integrated with the hidden Markov model solved by the Viterbi algorithm (HMM–Viterbi). Fourteen machine learning models were established and compared in order to predict feed intake rate through the accelerometer signals of recognized jaw movement activities. The developed behavior identification framework could effectively recognize different jaw movement activities with a precision of 99% at a window size of 10 s. The measured feed intake rate was 190 ± 89 g/min and could be predicted efficiently using the extra trees regressor (ETR), whose R 2 , RMSE , and NME were 0.97, 0.36 and 0.05, respectively. The three investigated monitoring sites may have affected the accuracy of feed intake prediction, but not behavior identification. P1 was recommended as the proper monitoring site, and the results of this study provide a reference for the further development of a wearable device equipped with accelerometers to measure feeding behavior and to predict feed intake.

Suggested Citation

  • Luyu Ding & Yang Lv & Ruixiang Jiang & Wenjie Zhao & Qifeng Li & Baozhu Yang & Ligen Yu & Weihong Ma & Ronghua Gao & Qinyang Yu, 2022. "Predicting the Feed Intake of Cattle Based on Jaw Movement Using a Triaxial Accelerometer," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:899-:d:843858
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/7/899/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/7/899/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yusei Kawagoe & Ikuo Kobayashi & Thi Thi Zin, 2023. "Facial Region Analysis for Individual Identification of Cows and Feeding Time Estimation," Agriculture, MDPI, vol. 13(5), pages 1-15, May.
    2. Na Liu & Jingwei Qi & Xiaoping An & Yuan Wang, 2023. "A Review on Information Technologies Applicable to Precision Dairy Farming: Focus on Behavior, Health Monitoring, and the Precise Feeding of Dairy Cows," Agriculture, MDPI, vol. 13(10), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    2. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    3. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    4. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    5. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    6. Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.
    7. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    8. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    9. Alexandros Menelaos Tzortzis & Sotiris Pelekis & Evangelos Spiliotis & Evangelos Karakolis & Spiros Mouzakitis & John Psarras & Dimitris Askounis, 2023. "Transfer Learning for Day-Ahead Load Forecasting: A Case Study on European National Electricity Demand Time Series," Mathematics, MDPI, vol. 12(1), pages 1-24, December.
    10. Zheng Wan & Hui Li, 2023. "Short-Term Power Load Forecasting Based on Feature Filtering and Error Compensation under Imbalanced Samples," Energies, MDPI, vol. 16(10), pages 1-22, May.
    11. Xiaolu Wei & Yubo Tian & Na Li & Huanxin Peng, 2024. "Evaluating ensemble learning techniques for stock index trend prediction: a case of China," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 23(3), pages 505-530, September.
    12. Xiaosheng Peng & Kai Cheng & Jianxun Lang & Zuowei Zhang & Tao Cai & Shanxu Duan, 2021. "Short-Term Wind Power Prediction for Wind Farm Clusters Based on SFFS Feature Selection and BLSTM Deep Learning," Energies, MDPI, vol. 14(7), pages 1-18, March.
    13. Wei, Nan & Yin, Chuang & Yin, Lihua & Tan, Jingyi & Liu, Jinyuan & Wang, Shouxi & Qiao, Weibiao & Zeng, Fanhua, 2024. "Short-term load forecasting based on WM algorithm and transfer learning model," Applied Energy, Elsevier, vol. 353(PA).
    14. Tianao Wu & Wei Zhang & Xiyun Jiao & Weihua Guo & Yousef Alhaj Hamoud, 2020. "Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    15. Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
    16. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    17. Sen Wang & Yonghui Sun & Yan Zhou & Rabea Jamil Mahfoud & Dongchen Hou, 2019. "A New Hybrid Short-Term Interval Forecasting of PV Output Power Based on EEMD-SE-RVM," Energies, MDPI, vol. 13(1), pages 1-17, December.
    18. Xue, Guixiang & Qi, Chengying & Li, Han & Kong, Xiangfei & Song, Jiancai, 2020. "Heating load prediction based on attention long short term memory: A case study of Xingtai," Energy, Elsevier, vol. 203(C).
    19. Moting Su & Zongyi Zhang & Ye Zhu & Donglan Zha, 2019. "Data-Driven Natural Gas Spot Price Forecasting with Least Squares Regression Boosting Algorithm," Energies, MDPI, vol. 12(6), pages 1-13, March.
    20. Wei, Nan & Yin, Lihua & Li, Chao & Liu, Jinyuan & Li, Changjun & Huang, Yuanyuan & Zeng, Fanhua, 2022. "Data complexity of daily natural gas consumption: Measurement and impact on forecasting performance," Energy, Elsevier, vol. 238(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:899-:d:843858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.