IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i7p1041-d864819.html
   My bibliography  Save this article

Experimental Study on Optimal Recycling Mechanical Parameters of Cotton Field Mulch film based on Small Soil Trough System

Author

Listed:
  • Can Hu

    (College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China
    College of Engineering, China Agricultural University, Beijing 100083, China
    Modern Agricultural Engineering Key Laboratory, Universities of Education Department of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Zhengxin Xu

    (College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China
    Modern Agricultural Engineering Key Laboratory, Universities of Education Department of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Xufeng Wang

    (College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China
    Modern Agricultural Engineering Key Laboratory, Universities of Education Department of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Long Wang

    (College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China
    College of Engineering, China Agricultural University, Beijing 100083, China
    Modern Agricultural Engineering Key Laboratory, Universities of Education Department of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Jianfei Xing

    (College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China
    Modern Agricultural Engineering Key Laboratory, Universities of Education Department of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Wensong Guo

    (College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China
    Modern Agricultural Engineering Key Laboratory, Universities of Education Department of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

Abstract

Film mulching agriculture in arid areas is faced with pollution caused by film mulching, and currently mainly adopts the mechanized recycling of mulch film. However, residual mulch film in the soil will bind with soil under the farming environment, which affects the recycling effect. The main factors affecting the recycling of mulch film in the soil are not clear. In order to find out the specific factors, the actual dry-wet cycle water environment was simulated by using a small soil trough system based on the film lifting, separation and recycling problem of residual mulch film in the soil. The film lifting force and recycling efficiency of the residual mulch film under the action of wet-dry cycle were studied. The following results were obtained: soil compaction, film lifting angle, and the dry-wet cycle had a significant influence on the film lifting force value, indicating that the dry-wet cycle including water fertilizer had an impact on the soil structure. After mechanical loosening, the film lifting force decreased and the recycling rate of residual mulch film increased obviously. The optimal film recycling effect could be obtained under the following conditions, namely, a film lifting angle of 21.37–45.37°, the number of dry-wet cycles <3.8, a soil moisture of 22.43–23.18%, a soil compaction of 132.51–144.06 KPa, and a residual mulch film area of 45.85–64.5 cm 2 . The experimental results can provide technical reference for residual mulch film pollution control and mechanized recycling.

Suggested Citation

  • Can Hu & Zhengxin Xu & Xufeng Wang & Long Wang & Jianfei Xing & Wensong Guo, 2022. "Experimental Study on Optimal Recycling Mechanical Parameters of Cotton Field Mulch film based on Small Soil Trough System," Agriculture, MDPI, vol. 12(7), pages 1-15, July.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:1041-:d:864819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/7/1041/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/7/1041/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Wang & Xuegeng Chen & Haojun Wen, 2022. "Research and Experiment on the Removal Mechanism of Light Impurities of the Residual Mulch Film Recovery Machine," Agriculture, MDPI, vol. 12(6), pages 1-16, May.
    2. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng, 2016. "Can the drip irrigation under film mulch reduce crop evapotranspiration and save water under the sufficient irrigation condition?," Agricultural Water Management, Elsevier, vol. 177(C), pages 128-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    2. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Wang, Yahui & Li, Sien & Qin, Shujing & Guo, Hui & Yang, Danni & Lam, Hon-Ming, 2020. "How can drip irrigation save water and reduce evapotranspiration compared to border irrigation in arid regions in northwest China," Agricultural Water Management, Elsevier, vol. 239(C).
    4. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.
    5. Wang, Tianyu & Wang, Zhenhua & Guo, Li & Zhang, Jinzhu & Li, Wenhao & He, Huaijie & Zong, Rui & Wang, Dongwang & Jia, Zhecheng & Wen, Yue, 2021. "Experiences and challenges of agricultural development in an artificial oasis: A review," Agricultural Systems, Elsevier, vol. 193(C).
    6. Guoqiang Zhang & Bo Ming & Dongping Shen & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2021. "Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    7. Xian Liu & Yueyue Xu & Shikun Sun & Xining Zhao & Yubao Wang, 2022. "Analysis of the Coupling Characteristics of Water Resources and Food Security: The Case of Northwest China," Agriculture, MDPI, vol. 12(8), pages 1-19, July.
    8. Wang, Jingwei & Du, Yadan & Niu, Wenquan & Han, Jinxian & Li, Yuan & Yang, Pingguo, 2022. "Drip irrigation mode affects tomato yield by regulating root–soil–microbe interactions," Agricultural Water Management, Elsevier, vol. 260(C).
    9. Muhammad Umair & Tabassum Hussain & Hanbing Jiang & Ayesha Ahmad & Jiawei Yao & Yongqing Qi & Yucui Zhang & Leilei Min & Yanjun Shen, 2019. "Water-Saving Potential of Subsurface Drip Irrigation For Winter Wheat," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    10. He, Qinsi & Li, Sien & Kang, Shaozhong & Yang, Hanbo & Qin, Shujing, 2018. "Simulation of water balance in a maize field under film-mulching drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 252-260.
    11. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Xu, Di & Huang, Qiannan & Wang, Shiyu, 2019. "Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China," Agricultural Water Management, Elsevier, vol. 221(C), pages 388-396.
    12. Zhang, Zhenyu & Li, Xiaoyu & Liu, Lijuan & Wang, Yugang & Li, Yan, 2020. "Influence of mulched drip irrigation on landscape scale evapotranspiration from farmland in an arid area," Agricultural Water Management, Elsevier, vol. 230(C).
    13. Guo, Hui & Li, Sien & Kang, Shaozhong & Du, Taisheng & Liu, Wenfeng & Tong, Ling & Hao, Xinmei & Ding, Risheng, 2022. "The controlling factors of ecosystem water use efficiency in maize fields under drip and border irrigation systems in Northwest China," Agricultural Water Management, Elsevier, vol. 272(C).
    14. Mengyu Guo & Bin Hu & Xin Luo & Chenglin Yuan & Yiquan Cai & Luochuan Xu, 2023. "Design and Test of a Sliding Cutting Device for the Plastic Mulch Waste," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    15. Sunling, Yang & Shahzad, Ali & Wang, Meng & Xi, Yueling & Shaik, Mohammed Rafi & Khan, Mujeeb, 2024. "Urease and nitrification inhibitors with drip fertigation strategies to mitigate global warming potential and improve water-nitrogen efficiency of maize under semi-arid regions," Agricultural Water Management, Elsevier, vol. 295(C).
    16. Zhang, You-Liang & Wang, Feng-Xin & Shock, Clinton Cleon & Yang, Kai-Jing & Kang, Shao-Zhong & Qin, Jing-Tao & Li, Si-En, 2017. "Influence of different plastic film mulches and wetted soil percentages on potato grown under drip irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 160-171.
    17. Zhou, Shiwei & Hu, Xiaotao & Ran, Hui & Wang, Wenè & Hansen, Neil & Cui, Ningbo, 2020. "Optimization of irrigation and nitrogen fertilizer management for spring maize in northwestern China using RZWQM2," Agricultural Water Management, Elsevier, vol. 240(C).
    18. Qin, Shujing & Fan, Yangzhen & Li, Sien & Cheng, Lei & Zhang, Lu & Xi, Haiyang & Qiu, Rangjian & Liu, Pan, 2023. "Partitioning of available energy in canopy and soil surface in croplands with different irrigation methods," Agricultural Water Management, Elsevier, vol. 288(C).
    19. Coelho, Eugênio Ferreira & Santos, Dionei Lima & Lima, Lenilson Wisner Ferreira de & Castricini, Ariane & Barros, Damiana Lima & Filgueiras, Roberto & da Cunha, Fernando França, 2022. "Water regimes on soil covered with plastic film mulch and relationships with soil water availability, yield, and water use efficiency of papaya trees," Agricultural Water Management, Elsevier, vol. 269(C).
    20. Wang, Feng & Xiao, Junfu & Ming, Bo & Xie, Ruizhi & Wang, Keru & Hou, Peng & Liu, Guangzhou & Zhang, Guoqiang & Chen, Jianglu & Liu, Wanmao & Yang, Yunshan & Qin, Anzhen & Li, Shaokun, 2021. "Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates," Agricultural Water Management, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:1041-:d:864819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.