IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v269y2022ics0378377422002566.html
   My bibliography  Save this article

Water regimes on soil covered with plastic film mulch and relationships with soil water availability, yield, and water use efficiency of papaya trees

Author

Listed:
  • Coelho, Eugênio Ferreira
  • Santos, Dionei Lima
  • Lima, Lenilson Wisner Ferreira de
  • Castricini, Ariane
  • Barros, Damiana Lima
  • Filgueiras, Roberto
  • da Cunha, Fernando França

Abstract

Plastic film mulches have the potential to be used in papaya production, mainly aiming to reduce water application in semi-arid regions. However, there is a lack of technical information and the need to introduce mulching practices in papaya orchards. The objective of this work was to evaluate the effects of plastic film mulch and irrigation depths on soil water availability (SWA), stomatal conductance, leaf temperature, and agronomic traits of papaya trees. The study was carried out during 2018 and 2019 in Jaíba city, located northern Minas Gerais state, in the Brazilian semi-arid region. The experiment was a split plot design, with soil cover conditions assigned to the plots (bare soil and mulched soil) and water replenishment levels to subplots (25%, 50%, 75%, 100% and 125% of crop evapotranspiration [ETc]). Plants were drip irrigated with water replenishments based on climate data. Soil moisture was measured along time and agronomic and physiological characteristics of papaya trees, as well. Water tensions were higher in treatments with lower water replenishments. Results showed that the increase in irrigation depth favors leaf-area growth rate, stomatal conductance, yield, and water footprint of papaya. The use of mulch together with the increase in water replenishment levels contributes for maintenance of the soil water content between the upper limit of SWA and 75%SWA. The use black plastic mulching with drip irrigation in medium-textured soil saves up to 152 L of water per Kg of fruit, and increase productivity up to 34% by replenishing the crop evapotranspiration every irrigation event. The use of black plastic as ground cover is technically feasible for keeping soil water availability above 75% by irrigation supply of at least 75% of ETc on sand-clay-loam soil.

Suggested Citation

  • Coelho, Eugênio Ferreira & Santos, Dionei Lima & Lima, Lenilson Wisner Ferreira de & Castricini, Ariane & Barros, Damiana Lima & Filgueiras, Roberto & da Cunha, Fernando França, 2022. "Water regimes on soil covered with plastic film mulch and relationships with soil water availability, yield, and water use efficiency of papaya trees," Agricultural Water Management, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002566
    DOI: 10.1016/j.agwat.2022.107709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422002566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    2. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Fan, Yaqiong & Ding, Risheng & Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Li, Sien, 2017. "Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland," Agricultural Water Management, Elsevier, vol. 179(C), pages 122-131.
    4. Santos, Dionei Lima & Coelho, Eugênio Ferreira & Cunha, Fernando França da & Donato, Sérgio Luiz Rodrigues & Bernado, Wallace de Paula & Rodrigues, Weverton Pereira & Campostrini, Eliemar, 2021. "Partial root-zone drying in field-grown papaya: Gas exchange, yield, and water use efficiency," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Amayreh, Jumah & Al-Abed, Nassim, 2005. "Developing crop coefficients for field-grown tomato (Lycopersicon esculentum Mill.) under drip irrigation with black plastic mulch," Agricultural Water Management, Elsevier, vol. 73(3), pages 247-254, May.
    6. Pérez-Pérez, J.G. & Navarro, J.M. & Robles, J.M. & Dodd, I.C., 2018. "Prolonged drying cycles stimulate ABA accumulation in Citrus macrophylla seedlings exposed to partial rootzone drying," Agricultural Water Management, Elsevier, vol. 210(C), pages 271-278.
    7. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng, 2016. "Can the drip irrigation under film mulch reduce crop evapotranspiration and save water under the sufficient irrigation condition?," Agricultural Water Management, Elsevier, vol. 177(C), pages 128-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinna Liu & Jie Zhang & Qian Wang & Hiba Shaghaleh & Tingting Chang & Yousef Alhaj Hamoud, 2022. "Modification of Soil Physical Properties by Maize Straw Biochar and Earthworm Manure to Enhance Hydraulic Characteristics under Greenhouse Condition," Sustainability, MDPI, vol. 14(20), pages 1-12, October.
    2. Coelho, Eugênio Ferreira & Lima, Lenilson Wisner Ferreira & Stringam, Blair & de Matos, Aristoteles Pires & Santos, Dionei Lima & Reinhardt, Domingo Haroldo & de Melo Velame, Lucas & dos Santos, Carlo, 2024. "Water productivity in pineapple (Ananas comosus) cultivation using plastic film to reduce evaporation and percolation," Agricultural Water Management, Elsevier, vol. 296(C).
    3. Linlin Ye & Yuanxiao Xu & Guofeng Zhu & Wenhao Zhang & Yinying Jiao, 2023. "Effects of Different Mulch Types on Farmland Soil Moisture in an Artificial Oasis Area," Land, MDPI, vol. 13(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    5. Wang, Feng & Xiao, Junfu & Ming, Bo & Xie, Ruizhi & Wang, Keru & Hou, Peng & Liu, Guangzhou & Zhang, Guoqiang & Chen, Jianglu & Liu, Wanmao & Yang, Yunshan & Qin, Anzhen & Li, Shaokun, 2021. "Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates," Agricultural Water Management, Elsevier, vol. 247(C).
    6. Liao, Qi & Ding, Risheng & Du, Taisheng & Kang, Shaozhong & Tong, Ling & Li, Sien, 2022. "Stomatal conductance drives variations of yield and water use of maize under water and nitrogen stress," Agricultural Water Management, Elsevier, vol. 268(C).
    7. Song, Zengzhen & Peng, Yuxing & Li, Zizhong & Zhang, Shuai & Liu, Xiaotong & Tan, Senwen, 2022. "Two irrigation events can achieve relatively high, stable corn yield and water productivity in aeolian sandy soil of northeast China," Agricultural Water Management, Elsevier, vol. 260(C).
    8. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    9. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    10. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    11. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    12. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    13. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    14. Feng, Z.Y. & Qin, T. & Du, X.Z. & Sheng, F. & Li, C.F., 2021. "Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China," Agricultural Water Management, Elsevier, vol. 250(C).
    15. Shrestha, N.K. & Shukla, S., 2014. "Basal crop coefficients for vine and erect crops with plastic mulch in a sub-tropical region," Agricultural Water Management, Elsevier, vol. 143(C), pages 29-37.
    16. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    17. Long Zhang & Xiaoyu Luan & Xinyi Chen & Shuhao Zhang & Yukun Liang & Zhaojie Cui, 2022. "Water Footprint Inventory Construction of Cathode Copper Products in a Chinese Eco-Industry," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    18. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    19. Wu, Lihong & Quan, Hao & Wu, Lina & Zhang, Xi & Feng, Hao & Ding, Dianyuan & Siddique, Kadambot H.M., 2023. "Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 289(C).
    20. Xing, Yingying & Zhang, Teng & Jiang, Wenting & Li, Peng & Shi, Peng & Xu, Guoce & Cheng, Shengdong & Cheng, Yuting & Fan, Zhang & Wang, Xiukang, 2022. "Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China," Agricultural Water Management, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.