IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4513-d1086264.html
   My bibliography  Save this article

Design and Test of a Sliding Cutting Device for the Plastic Mulch Waste

Author

Listed:
  • Mengyu Guo

    (Xinjiang Production and Construction Corps, Key Laboratory of Modern Agricultural Machinery, Shihezi 832003, China
    College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China
    Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China)

  • Bin Hu

    (Xinjiang Production and Construction Corps, Key Laboratory of Modern Agricultural Machinery, Shihezi 832003, China
    College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China
    Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China)

  • Xin Luo

    (Xinjiang Production and Construction Corps, Key Laboratory of Modern Agricultural Machinery, Shihezi 832003, China
    College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China
    Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China)

  • Chenglin Yuan

    (Xinjiang Production and Construction Corps, Key Laboratory of Modern Agricultural Machinery, Shihezi 832003, China
    College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China
    Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China)

  • Yiquan Cai

    (Xinjiang Production and Construction Corps, Key Laboratory of Modern Agricultural Machinery, Shihezi 832003, China
    College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China
    Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China)

  • Luochuan Xu

    (Xinjiang Production and Construction Corps, Key Laboratory of Modern Agricultural Machinery, Shihezi 832003, China
    College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China
    Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China)

Abstract

Agricultural mulch waste that is mechanically recycled has a high resource value. It has been found that the mulch is tightly entangled in the crop straw, forming a knotted feature that prevents further resource utilization. Traditional cutting tools were found to be ineffective in breaking up the knotted feature. In response to the above problems, a sliding cutting device for mechanically recovered mulch waste was proposed and built. The structure of the device and key components were designed and analyzed. A three-factor five-level orthogonal test was conducted and regression variance analysis was performed with the Central Composite Design (CCD) module in Design expert 8. The relationship model was constructed between the test factors such as supporting motor speed a , cutting-support rotation speed ratio b , and cutting edge angle c and the response indicators such as film breakage rate y 1 and knotted feature removal rate y 2 . The influence law between each key parameter with its significant interaction and the waste crushing effect was analyzed, and the optimum combination of parameters of the crushing device were obtained. Under the same conditions, the errors between the physical test values and the model prediction values of the two response indicators were 2.17% and 3.52%, respectively, indicating that the verification test results were basically consistent with the model prediction results.

Suggested Citation

  • Mengyu Guo & Bin Hu & Xin Luo & Chenglin Yuan & Yiquan Cai & Luochuan Xu, 2023. "Design and Test of a Sliding Cutting Device for the Plastic Mulch Waste," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4513-:d:1086264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4513/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Wang & Xuegeng Chen & Haojun Wen, 2022. "Research and Experiment on the Removal Mechanism of Light Impurities of the Residual Mulch Film Recovery Machine," Agriculture, MDPI, vol. 12(6), pages 1-16, May.
    2. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Zhenqi & Zhang, Chen & Yu, Shuolei & Lai, Zhenlin & Wang, Haidong & Zhang, Fucang & Li, Zhijun & Wu, Peng & Fan, Junliang, 2023. "Ridge-furrow planting with black film mulching increases rainfed summer maize production by improving resources utilization on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Lv, Shenqiang & Li, Jia & Yang, Zeyu & Yang, Ting & Li, Huitong & Wang, Xiaofei & Peng, Yi & Zhou, Chunju & Wang, Linquan & Abdo, Ahmed I., 2023. "The field mulching could improve sustainability of spring maize production on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 279(C).
    3. Xiaolong Liu & Ruijie Shi & Wuyun Zhao & Wei Sun & Peiwen Li & Hui Li & Hua Zhang & Jiuxin Wang & Guanping Wang & Fei Dai, 2024. "Study on the Characteristics of Residual Film–Soil–Root Stubble Complex in Maize Stubble Fields of the Hexi Corridor and Establishment of a Discrete Element Model," Agriculture, MDPI, vol. 14(9), pages 1-21, September.
    4. Li, Cheng & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Zhang, Tibin & Dong, Qin’ge & Feng, Hao & Zhang, Wenxin & Siddique, Kadambot H.M., 2023. "Ridge planting with transparent plastic mulching improves maize productivity by regulating the distribution and utilization of soil water, heat, and canopy radiation in arid irrigation area," Agricultural Water Management, Elsevier, vol. 280(C).
    5. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    6. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Li, Cheng & Luo, Xiaoqi & Wang, Naijiang & Wu, Wenjie & Li, Yue & Quan, Hao & Zhang, Tibin & Ding, Dianyuan & Dong, Qin’ge & Feng, Hao, 2022. "Transparent plastic film combined with deficit irrigation improves hydrothermal status of the soil-crop system and spring maize growth in arid areas," Agricultural Water Management, Elsevier, vol. 265(C).
    8. Can Hu & Zhengxin Xu & Xufeng Wang & Long Wang & Jianfei Xing & Wensong Guo, 2022. "Experimental Study on Optimal Recycling Mechanical Parameters of Cotton Field Mulch film based on Small Soil Trough System," Agriculture, MDPI, vol. 12(7), pages 1-15, July.
    9. Guo, Jinjin & Fan, Junliang & Xiang, Youzhen & Zhang, Fucang & Yan, Shicheng & Zhang, Xueyan & Zheng, Jing & Hou, Xianghao & Tang, Zijun & Li, Zhijun, 2022. "Maize leaf functional responses to blending urea and slow-release nitrogen fertilizer under various drip irrigation regimes," Agricultural Water Management, Elsevier, vol. 262(C).
    10. Liu, Yu & Li, Shilei & Liu, Yanxin & Shen, Hongzheng & Huang, Tingting & Ma, Xiaoyi, 2023. "Optimization of a nitrogen fertilizer application scheme for spring maize in full-film double-ridge furrow in Longzhong, China," Agricultural Water Management, Elsevier, vol. 290(C).
    11. Zhang, Shibo & Zhang, Guixin & Xia, Zhenqing & Wu, Mengke & Bai, Jingxuan & Lu, Haidong, 2022. "Optimizing plastic mulching improves the growth and increases grain yield and water use efficiency of spring maize in dryland of the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 271(C).
    12. Guixin Zhang & Shibo Zhang & Zhenqing Xia & Mengke Wu & Jingxuan Bai & Haidong Lu, 2023. "Effects of Biodegradable Film and Polyethylene Film Residues on Soil Moisture and Maize Productivity in Dryland," Agriculture, MDPI, vol. 13(2), pages 1-17, January.
    13. Xufeng Li & Juanjuan Ma & Xihuan Sun & Lijian Zheng & Ruixia Chen & Jianglong An, 2023. "Estimating the Effects of Deficit Irrigation on Water Absorption and Utilization of Tomatoes Grown in Greenhouse with Hydrus-1D Model," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    14. Zhang, Binbin & Hu, Yajin & Hill, Robert Lee & Wu, Shufang & Song, Xiaolin, 2021. "Combined effects of biomaterial amendments and rainwater harvesting on soil moisture, structure and apple roots in a rainfed apple orchard on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 248(C).
    15. Wang, Feng & Wang, Yulong & Lyu, Hanqiang & Fan, Zhilong & Hu, Falong & He, Wei & Yin, Wen & Zhao, Cai & Chai, Qiang & Yu, Aizhong, 2023. "No-tillage mulch with leguminous green manure retention reduces soil evaporation and increases yield and water productivity of maize," Agricultural Water Management, Elsevier, vol. 290(C).
    16. Zhao, Xiaofang & Huang, Mingbin & Yan, Xiaoying & Yang, Yingnan, 2022. "The impacts of climate change and cropping systems on soil water recovery in the 0–1500 cm soil profile after alfalfa," Agricultural Water Management, Elsevier, vol. 272(C).
    17. Liang Pan & Hongguang Yang & Hongbo Xu & Haiyang Shen & Man Gu & Weiwen Luo & Feng Wu & Fengwei Gu & Guiying Ren & Zhichao Hu, 2024. "Mechanized Recycling of Residual Film from Typical Ridge and Mulching Crops in China: Current Status, Problems, and Recommendations for Sustainable Agricultural Development," Sustainability, MDPI, vol. 16(20), pages 1-16, October.
    18. Zhao, Xiao & Gu, Xiaobo & Yang, Zhichao & Li, Yuannong & Zhang, Li & Zhou, Jiaming, 2022. "Effects of soil preparation and mulching practices together with different urea applications on the water and nitrogen use of winter wheat in semi-humid and drought-prone areas," Agricultural Water Management, Elsevier, vol. 263(C).
    19. Guo, Jinjin & Fan, Junliang & Xiang, Youzhen & Zhang, Fucang & Yan, Shicheng & Zhang, Xueyan & Zheng, Jing & Li, Yuepeng & Tang, Zijun & Li, Zhijun, 2022. "Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize," Agricultural Water Management, Elsevier, vol. 261(C).
    20. Wang, Zhuangji & Timlin, Dennis & Li, Sanai & Fleisher, David & Dathe, Annette & Luo, Chenyi & Dong, Lixin & Reddy, Vangimalla R. & Tully, Katherine, 2021. "A diffusive model of maize root growth in MAIZSIM and its applications in Ridge-Furrow Rainfall Harvesting," Agricultural Water Management, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4513-:d:1086264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.