IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i6p801-d829989.html
   My bibliography  Save this article

Effects on Net Irrigation Water Requirement of Joint Distribution of Precipitation and Reference Evapotranspiration

Author

Listed:
  • Feilong Jie

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
    Institute of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Liangjun Fei

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
    Institute of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Shan Li

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
    Institute of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Kun Hao

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
    Institute of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Lihua Liu

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
    Institute of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Youliang Peng

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
    Institute of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China)

Abstract

To establish the uncertain influence that the joint distribution of precipitation and reference evapotranspiration has on net irrigation water requirement, a Copula function–Monte Carlo method (CFMC) was proposed to calculate the probability of irrigation water requirement. Taking the Jingdian Irrigation District in Northwest China as an example, the distribution laws of precipitation and reference evapotranspiration were studied. Furthermore, five typical years under different crop planting structure conditions were selected, and the variation characteristics of net irrigation water requirement in each typical year under the conditions of climate uncertainty were analyzed. The results revealed the optimal distribution functions of precipitation and reference evapotranspiration to be gamma distribution and lognormal distribution. The probability density map of the joint distribution of precipitation and reference evapotranspiration has a “saddle” shape; that is, irrigation water requirement and reference evapotranspiration are usually inversely related. As the probability of the irrigation water requirement increases, the net irrigation water requirement in the irrigation area also increases. The CFMC method can determine the design value of the net irrigation water requirement under a specific probability for typical years under different crop planting structure conditions, which can provide a reference for agricultural water resource allocation in irrigation areas.

Suggested Citation

  • Feilong Jie & Liangjun Fei & Shan Li & Kun Hao & Lihua Liu & Youliang Peng, 2022. "Effects on Net Irrigation Water Requirement of Joint Distribution of Precipitation and Reference Evapotranspiration," Agriculture, MDPI, vol. 12(6), pages 1-16, June.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:6:p:801-:d:829989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/6/801/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/6/801/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehta, Vishal K. & Haden, Van R. & Joyce, Brian A. & Purkey, David R. & Jackson, Louise E., 2013. "Irrigation demand and supply, given projections of climate and land-use change, in Yolo County, California," Agricultural Water Management, Elsevier, vol. 117(C), pages 70-82.
    2. Kuo, Sheng-Feng & Ho, Shin-Shen & Liu, Chen-Wuing, 2006. "Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan Irrigation Association, Taiwan," Agricultural Water Management, Elsevier, vol. 82(3), pages 433-451, April.
    3. Saadi, Sameh & Todorovic, Mladen & Tanasijevic, Lazar & Pereira, Luis S. & Pizzigalli, Claudia & Lionello, Piero, 2015. "Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield," Agricultural Water Management, Elsevier, vol. 147(C), pages 103-115.
    4. Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2007. "Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(3), pages 241-250, February.
    5. Jie, Feilong & Fei, Liangjun & Li, Shan & Hao, Kun & Liu, Lihua & Zhu, Hongyan, 2021. "Prediction model for irrigation return flow considering lag effect for arid areas," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Asian Development Bank Institute, 2017. "Asian Water Development Outlook 2016: Description of Methodology and Data," Working Papers id:11721, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianli Wang & Zhigang Zhao & Feilong Jie & Jingjing Xu & Sheng Li & Kun Hao & Youliang Peng, 2024. "A Copula Function–Monte Carlo Method-Based Assessment of the Risk of Agricultural Water Demand in Xinjiang, China," Agriculture, MDPI, vol. 14(11), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    2. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    3. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    4. Amber Kerr & Jake Dialesandro & Kerri Steenwerth & Nathan Lopez-Brody & Emile Elias, 2018. "Vulnerability of California specialty crops to projected mid-century temperature changes," Climatic Change, Springer, vol. 148(3), pages 419-436, June.
    5. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    6. Lv, Yuping & Xu, Junzeng & Yang, Shihong & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2018. "Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 154-161.
    7. Hyunok Lee & Daniel Sumner, 2015. "Economics of downscaled climate-induced changes in cropland, with projections to 2050: evidence from Yolo County California," Climatic Change, Springer, vol. 132(4), pages 723-737, October.
    8. Yoo, Seung-Hwan & Choi, Jin-Yong & Jang, Min-Won, 2008. "Estimation of design water requirement using FAO Penman-Monteith and optimal probability distribution function in South Korea," Agricultural Water Management, Elsevier, vol. 95(7), pages 845-853, July.
    9. Ajay Gajanan Bhave & Neha Mittal & Ashok Mishra & Narendra Singh Raghuwanshi, 2016. "Integrated Assessment of no-Regret Climate Change Adaptation Options for Reservoir Catchment and Command Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1001-1018, February.
    10. Zhang, Xinmin & Hu, Lin & Bian, Xiuju & Zhao, Bingxiang & Chai, Fahe & Sun, Xinzhang, 2007. "The most economical irrigation amount and evapotranspiration of the turfgrasses in Beijing City, China," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 98-104, April.
    11. Yang, Xiaolin & Gao, Wangsheng & Shi, Quanhong & Chen, Fu & Chu, Qingquan, 2013. "Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region," Agricultural Water Management, Elsevier, vol. 124(C), pages 20-27.
    12. Yi Cai & Yasuhiro Mitani & Hiro Ikemi & Shuguang Liu, 2012. "Effect of Precipitation Timescale Selection on Tempo-spatial Assessment of Paddy Water Demand in Chikugo-Saga Plain, Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1731-1746, April.
    13. Nikouei, Alireza & Asgharipour, Mohammad Reza & Marzban, Zahra, 2022. "Modeling land allocation to produce crops under economic and environmental goals in Iran: a multi-objective programming approach," Ecological Modelling, Elsevier, vol. 471(C).
    14. Ruchie Pathak & Nicholas R. Magliocca, 2022. "Assessing the Representativeness of Irrigation Adoption Studies: A Meta-Study of Global Research," Agriculture, MDPI, vol. 12(12), pages 1-31, December.
    15. Li, Hua & Liang, Xinqiang & Chen, Yingxu & Tian, Guangming & Zhang, Zhijian, 2008. "Ammonia volatilization from urea in rice fields with zero-drainage water management," Agricultural Water Management, Elsevier, vol. 95(8), pages 887-894, August.
    16. Tassadit Kourat & Dalila Smadhi & Brahim Mouhouche & Nerdjes Gourari & M. G. Mostofa Amin & Christopher Robin Bryant, 2021. "Assessment of future climate change impact on rainfed wheat yield in the semi-arid Eastern High Plain of Algeria using a crop model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2175-2203, July.
    17. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    18. Jinping Zhang & Yong Zhao & Weihua Xiao, 2014. "Study on Markov Joint Transition Probability and Encounter Probability of Rainfall and Reference Crop Evapotranspiration in the Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5543-5553, December.
    19. Naveed Ahmed & Haishen Lü & Shakeel Ahmed & Ghulam Nabi & Muhammad Abdul Wajid & Aamir Shakoor & Hafiz Umar Farid, 2021. "Irrigation Supply and Demand, Land Use/Cover Change and Future Projections of Climate, in Indus Basin Irrigation System, Pakistan," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    20. Aziiba Emmanuel Asibi & Falong Hu & Zhilong Fan & Qiang Chai, 2022. "Optimized Nitrogen Rate, Plant Density, and Regulated Irrigation Improved Grain, Biomass Yields, and Water Use Efficiency of Maize at the Oasis Irrigation Region of China," Agriculture, MDPI, vol. 12(2), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:6:p:801-:d:829989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.