IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i5p653-d806872.html
   My bibliography  Save this article

Humic Acid Fertilizer Incorporation Increases Rice Radiation Use, Growth, and Yield: A Case Study on the Songnen Plain, China

Author

Listed:
  • Ennan Zheng

    (School of Hydraulic and Electric Power, Heilongjiang University, Harbin 150080, China)

  • Mengting Qin

    (School of Hydraulic and Electric Power, Heilongjiang University, Harbin 150080, China)

  • Zhongxue Zhang

    (School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Tianyu Xu

    (School of Hydraulic and Electric Power, Heilongjiang University, Harbin 150080, China)

Abstract

Humic acid fertilizer (HA) incorporation is a common method for improving crop growth and soil fertility. However, the effects of HA incorporation on rice growth are still unknown. We conducted a two-year field experiment to determine the radiation use, growth, and yield of rice grown with five different HA rates: 110 kg∙ha −1 100% urea (pure nitrogen) (T1); 30% HA and 70% urea (T2); 50% HA and 50% urea (T3); 70% HA and 30% urea (T4), and 1500 kg∙ha −1 100% HA (T5). The results showed that the T2 treatment had the lowest values of photosynthetic efficiency of PSII ( F v /F m ), relative leaf chlorophyll content ( SPAD ), plant height and leaf area index ( LAI ) in both years, which were similar to the photosynthetically active radiation ( IPAR ), radiation use efficiency ( RUE ), yield, and biomass. In contrast, the highest harvest index ( HI ) value was found in the T2 treatment. In the two years, the T4 and T5 treatments showed no significant differences. However, the multivariate statistical method based on principal component analysis showed that in the first principal component, the LAI , biomass, yield, plant height, SPAD , F v /F m , IPAR , and RUE had a positive correlation, and the HI had a negative correlation. The LAI , yield, plant height, SPAD , HI , and RUE had a positive correlation, but biomass, F v /F m and IPAR had a negative correlation in the second principal component. Across the different HA treatments, the comprehensive scores were T5 > T4 > T3 > T1 > T2, with values of 2.13, 1.38, −0.17, −0.34, and −3.00, respectively. According to the principal component analysis results of each index, the T5 treatment was better than the T4 treatment.

Suggested Citation

  • Ennan Zheng & Mengting Qin & Zhongxue Zhang & Tianyu Xu, 2022. "Humic Acid Fertilizer Incorporation Increases Rice Radiation Use, Growth, and Yield: A Case Study on the Songnen Plain, China," Agriculture, MDPI, vol. 12(5), pages 1-13, April.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:653-:d:806872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/5/653/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/5/653/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Peng & Nie, Tangzhe & Chen, Shuaihong & Zhang, Zhongxue & Qi, Zhijuan & Liu, Wanning, 2019. "Recovery efficiency and loss of 15N-labelled urea in a rice-soil system under water saving irrigation in the Songnen Plain of Northeast China," Agricultural Water Management, Elsevier, vol. 222(C), pages 139-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyoung-Seok Lee & Hyo-Suk Gwon & Sun-Il Lee & Hye-Ran Park & Jong-Mun Lee & Do-Gyun Park & So-Ra Lee & So-Hyeon Eom & Taek-Keun Oh, 2024. "Reducing Methane Emissions with Humic Acid–Iron Complex in Rice Cultivation: Impact on Greenhouse Gas Emissions and Rice Yield," Sustainability, MDPI, vol. 16(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Tangzhe & Huang, Jianyi & Zhang, Zhongxue & Chen, Peng & Li, Tiecheng & Dai, Changlei, 2023. "The inhibitory effect of a water-saving irrigation regime on CH4 emission in Mollisols under straw incorporation for 5 consecutive years," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Han, Yu & Zhang, Zhongxue & Li, Tiecheng & Chen, Peng & Nie, Tangzhe & Zhang, Zuohe & Du, Sicheng, 2023. "Straw return alleviates the greenhouse effect of paddy fields by increasing soil organic carbon sequestration under water-saving irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    3. Na Li & Tangzhe Nie & Yi Tang & Dehao Lu & Tianyi Wang & Zhongxue Zhang & Peng Chen & Tiecheng Li & Linghui Meng & Yang Jiao & Kaiwen Cheng, 2022. "Responses of Soybean Water Supply and Requirement to Future Climate Conditions in Heilongjiang Province," Agriculture, MDPI, vol. 12(7), pages 1-21, July.
    4. Jianyi Huang & Tangzhe Nie & Tiecheng Li & Peng Chen & Zhongxue Zhang & Shijiang Zhu & Zhongyi Sun & Lihua E, 2022. "Effects of Straw Incorporation Years and Water-Saving Irrigation on Greenhouse Gas Emissions from Paddy Fields in Cold Region of Northeast China," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    5. Chen, Peng & Xu, Junzeng & Zhang, Zhongxue & Nie, Tangzhe & Wang, Kechun & Guo, Hang, 2022. "Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling," Agricultural Water Management, Elsevier, vol. 273(C).
    6. Yue Wang & Ge Song & Wenying Li, 2021. "The Interaction Relationship between Land Use Patterns and Socioeconomic Factors Based on Wavelet Analysis: A Case Study of the Black Soil Region of Northeast China," Land, MDPI, vol. 10(11), pages 1-19, November.
    7. Ma, Chao & Wang, Jun & Li, Jiusheng, 2023. "Utilization of soil and fertilizer nitrogen supply under mulched drip irrigation with various water qualities in arid regions," Agricultural Water Management, Elsevier, vol. 280(C).
    8. Song, Fang & Liu, Ming & Zhang, Zhongxue & Qi, Zhijuan & Li, Tiecheng & Du, Sicheng & Li, Ao & Liu, Jie, 2024. "No-tillage with straw mulching increased maize yield and nitrogen fertilizer recovery rate in northeast China," Agricultural Water Management, Elsevier, vol. 292(C).
    9. Yajun Luan & Junzeng Xu & Jing Zhou & Haiyu Wang & Fengxiang Han & Kechun Wang & Yuping Lv, 2022. "Migration and Removal of Labile Cadmium Contaminants in Paddy Soils by Electrokinetic Remediation without Changing Soil pH," IJERPH, MDPI, vol. 19(7), pages 1-18, March.
    10. Du, Sicheng & Zhang, Zhongxue & Chen, Peng & Li, Tiecheng & Han, Yu & Song, Jian, 2022. "Fate of each period fertilizer N in Mollisols under water and N management: A 15N tracer study," Agricultural Water Management, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:653-:d:806872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.