IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i5p571-d796878.html
   My bibliography  Save this article

Improving Winter Wheat Yield Forecasting Based on Multi-Source Data and Machine Learning

Author

Listed:
  • Yuexia Sun

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Shuai Zhang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Fulu Tao

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland)

  • Rashad Aboelenein

    (Barley Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 583121, Egypt)

  • Alia Amer

    (Medicinal and Aromatic Plants Department, Horticulture Research Institute, Agricultural Research Center, Giza 583121, Egypt)

Abstract

To meet the challenges of climate change, population growth, and an increasing food demand, an accurate, timely and dynamic yield estimation of regional and global crop yield is critical to food trade and policy-making. In this study, a machine learning method (Random Forest, RF) was used to estimate winter wheat yield in China from 2014 to 2018 by integrating satellite data, climate data, and geographic information. The results show that the yield estimation accuracy of RF is higher than that of the multiple linear regression method. The yield estimation accuracy can be significantly improved by using climate data and geographic information. According to the model results, the estimation accuracy of winter wheat yield increases dramatically and then flattens out over months; it approached the maximum in March, with R 2 and RMSE reaching 0.87 and 488.59 kg/ha, respectively; this model can achieve a better yield forecasting at a large scale two months in advance.

Suggested Citation

  • Yuexia Sun & Shuai Zhang & Fulu Tao & Rashad Aboelenein & Alia Amer, 2022. "Improving Winter Wheat Yield Forecasting Based on Multi-Source Data and Machine Learning," Agriculture, MDPI, vol. 12(5), pages 1-16, April.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:571-:d:796878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/5/571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/5/571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nendel, C. & Berg, M. & Kersebaum, K.C. & Mirschel, W. & Specka, X. & Wegehenkel, M. & Wenkel, K.O. & Wieland, R., 2011. "The MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics," Ecological Modelling, Elsevier, vol. 222(9), pages 1614-1625.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hampf, Anna C. & Carauta, Marcelo & Latynskiy, Evgeny & Libera, Affonso A.D. & Monteiro, Leonardo & Sentelhas, Paulo & Troost, Christian & Berger, Thomas & Nendel, Claas, 2018. "The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 1-13.
    2. Michael Kuhwald & Katja Dörnhöfer & Natascha Oppelt & Rainer Duttmann, 2018. "Spatially Explicit Soil Compaction Risk Assessment of Arable Soils at Regional Scale: The SaSCiA-Model," Sustainability, MDPI, vol. 10(5), pages 1-29, May.
    3. Carauta, Marcelo & Troost, Christian & Guzman-Bustamante, Ivan & Hampf, Anna & Libera, Affonso & Meurer, Katharina & Bönecke, Eric & Franko, Uwe & Ribeiro Rodrigues, Renato de Aragão & Berger, Thomas, 2021. "Climate-related land use policies in Brazil: How much has been achieved with economic incentives in agriculture?," Land Use Policy, Elsevier, vol. 109(C).
    4. Carauta, Marcelo & Parussis, Julia & Hampf, Anna & Libera, Affonso & Berger, Thomas, 2021. "No more double cropping in Mato Grosso, Brazil? Evaluating the potential impact of climate change on the profitability of farm systems," Agricultural Systems, Elsevier, vol. 190(C).
    5. Tadiello, Tommaso & Gabbrielli, Mara & Botta, Marco & Acutis, Marco & Bechini, Luca & Ragaglini, Giorgio & Fiorini, Andrea & Tabaglio, Vincenzo & Perego, Alessia, 2023. "A new module to simulate surface crop residue decomposition: Description and sensitivity analysis," Ecological Modelling, Elsevier, vol. 480(C).
    6. Galmarini, S. & Solazzo, E. & Ferrise, R. & Srivastava, A. Kumar & Ahmed, M. & Asseng, S. & Cannon, A.J. & Dentener, F. & De Sanctis, G. & Gaiser, T. & Gao, Y. & Gayler, S. & Gutierrez, J.M. & Hoogenb, 2024. "Assessing the impact on crop modelling of multi- and uni-variate climate model bias adjustments," Agricultural Systems, Elsevier, vol. 215(C).
    7. Martin Schmidt & Claas Nendel & Roger Funk & Matthew G. E. Mitchell & Gunnar Lischeid, 2019. "Modeling Yields Response to Shading in the Field-to-Forest Transition Zones in Heterogeneous Landscapes," Agriculture, MDPI, vol. 9(1), pages 1-15, January.
    8. Sandra Ledermüller & Marco Lorenz & Joachim Brunotte & Norbert Fröba, 2018. "A Multi-Data Approach for Spatial Risk Assessment of Topsoil Compaction on Arable Sites," Sustainability, MDPI, vol. 10(8), pages 1-22, August.
    9. Tenreiro, Tomás R. & García-Vila, Margarita & Gómez, José A. & Jimenez-Berni, José A. & Fereres, Elías, 2020. "Water modelling approaches and opportunities to simulate spatial water variations at crop field level," Agricultural Water Management, Elsevier, vol. 240(C).
    10. Pasquel, Daniel & Cammarano, Davide & Roux, Sébastien & Castrignanò, Annamaria & Tisseyre, Bruno & Rinaldi, Michele & Troccoli, Antonio & Taylor, James A., 2023. "Downscaling the APSIM crop model for simulation at the within-field scale," Agricultural Systems, Elsevier, vol. 212(C).
    11. Jin, Xiuliang & Li, Zhenhai & Feng, Haikuan & Ren, Zhibin & Li, Shaokun, 2020. "Estimation of maize yield by assimilating biomass and canopy cover derived from hyperspectral data into the AquaCrop model," Agricultural Water Management, Elsevier, vol. 227(C).
    12. Yin, Xiaogang & Kersebaum, Kurt Christian & Kollas, Chris & Manevski, Kiril & Baby, Sanmohan & Beaudoin, Nicolas & Öztürk, Isik & Gaiser, Thomas & Wu, Lianhai & Hoffmann, Munir & Charfeddine, Monia & , 2017. "Performance of process-based models for simulation of grain N in crop rotations across Europe," Agricultural Systems, Elsevier, vol. 154(C), pages 63-77.
    13. Hampf, Anna C. & Stella, Tommaso & Berg-Mohnicke, Michael & Kawohl, Tobias & Kilian, Markus & Nendel, Claas, 2020. "Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development," Agricultural Systems, Elsevier, vol. 177(C).
    14. Carauta, M. & Guzman-Bustamante, I. & Meurer, K. & Hampf, A. & Troost, C. & Rodrigues, R. & Berger, T., 2018. "Assessing the full distribution of greenhouse gas emissions from crop, livestock and commercial forestry plantations in Brazil's Southern Amazon," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277118, International Association of Agricultural Economists.
    15. Xenia Specka & Claas Nendel & Ralf Wieland, 2019. "Temporal Sensitivity Analysis of the MONICA Model: Application of Two Global Approaches to Analyze the Dynamics of Parameter Sensitivity," Agriculture, MDPI, vol. 9(2), pages 1-29, February.
    16. Joseph MacPherson & Carsten Paul & Katharina Helming, 2020. "Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models," Sustainability, MDPI, vol. 12(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:571-:d:796878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.