IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v245y2021ics0378377420322083.html
   My bibliography  Save this article

Soil aeration using air injection in a citrus orchard with shallow groundwater

Author

Listed:
  • Ben-Noah, Ilan
  • Nitsan, Ido
  • Cohen, Ben
  • Kaplan, Guy
  • Friedman, Shmulik P.

Abstract

Soil aeration is considered the third most important factor affecting soil fertility (after water and nutrient availability). The main reasons for poor soil aeration are slow drainage, excessive precipitation or irrigation, or a sealing soil cover. Shallow groundwater impedes drainage by reducing the downwardly hydraulic gradient, which consequently increases the water content of the soil in the root zone, thus limiting soil aeration. In this study, we examined the effects of different parameters (e.g., soil texture, depth of groundwater table) on the severity of oxygen deficiency in the root zone of a mature Valencia orange (Citrus sinensis) grove planted above shallow groundwater. In addition, we examined the effect of the O2 stress level on tree growth, yield, and fruit quality. We also evaluated the effects of air injection and of irrigation intensity on tree growth, yield, fruit quality, and O2 concentration in the soil’s air, and looked into the (technical and economic) feasibility of air injection into the soil. We found that insufficient soil aeration significantly inhibited tree growth and reduced the yield. The soil texture (i.e., clay content) had a substantial effect on the yield, mainly because of its effect on the soil’s water retention. While soil O2 concentration slightly increased by air injection, the differences in tree growth, yield, and fruit quality parameters were not significant. The O2 concentration of the soil air alone was found to be a poor quantifier of soil aeration status. The Damkholer number (Da), evaluated from the measured soil O2 profiles and groundwater table depths is a superior quantifier for the prevailing aeration status. It can also be used for analyzing the effect of irrigation water quality on soil aeration status and respiration rates.

Suggested Citation

  • Ben-Noah, Ilan & Nitsan, Ido & Cohen, Ben & Kaplan, Guy & Friedman, Shmulik P., 2021. "Soil aeration using air injection in a citrus orchard with shallow groundwater," Agricultural Water Management, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:agiwat:v:245:y:2021:i:c:s0378377420322083
    DOI: 10.1016/j.agwat.2020.106664
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420322083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Friedman, S.P. & Naftaliev, B., 2012. "A survey of the aeration status of drip-irrigated orchards," Agricultural Water Management, Elsevier, vol. 115(C), pages 132-147.
    2. Ben-Noah, I. & Friedman, S.P., 2016. "Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments," Agricultural Water Management, Elsevier, vol. 176(C), pages 222-233.
    3. Ityel, Eviatar & Ben-Gal, Alon & Silberbush, Moshe & Lazarovitch, Naftali, 2014. "Increased root zone oxygen by a capillary barrier is beneficial to bell pepper irrigated with brackish water in an arid region," Agricultural Water Management, Elsevier, vol. 131(C), pages 108-114.
    4. Grattan, S.R. & Díaz, F.J. & Pedrero, F. & Vivaldi, G.A., 2015. "Assessing the suitability of saline wastewaters for irrigation of Citrus spp.: Emphasis on boron and specific-ion interactions," Agricultural Water Management, Elsevier, vol. 157(C), pages 48-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jinjin & Niu, Wenquan & Zhang, Zhenhua & Siddique, Kadambot H.M. & Dan Sun, & Yang, Runya, 2022. "Distinct roles for soil bacterial and fungal communities associated with the availability of carbon and phosphorus under aerated drip irrigation," Agricultural Water Management, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben-Noah, I. & Friedman, S.P., 2016. "Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments," Agricultural Water Management, Elsevier, vol. 176(C), pages 222-233.
    2. Yan Zhu & Huanjie Cai & Libing Song & Xiaowen Wang & Zihui Shang & Yanan Sun, 2020. "Aerated Irrigation of Different Irrigation Levels and Subsurface Dripper Depths Affects Fruit Yield, Quality and Water Use Efficiency of Greenhouse Tomato," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    3. Du, Ya-Dan & Zhang, Qian & Cui, Bing-Jing & Sun, Jun & Wang, Zhen & Ma, Li-Hui & Niu, Wen-Quan, 2020. "Aerated irrigation improves tomato yield and nitrogen use efficiency while reducing nitrogen application rate," Agricultural Water Management, Elsevier, vol. 235(C).
    4. Yuan Li & Zhenxing Zhang & Jingwei Wang & Mingzhi Zhang, 2022. "Soil Aeration and Plastic Film Mulching Increase the Yield Potential and Quality of Tomato ( Solanum lycopersicum )," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
    5. Zhenzhen Yu & Chun Wang & Huafen Zou & Hongxuan Wang & Hailiang Li & Haitian Sun & Deshui Yu, 2022. "The Effects of Aerated Irrigation on Soil Respiration and the Yield of the Maize Root Zone," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    6. Honghui SANG & Xiyun JIAO & Shufang WANG & Weihua GUO & Mohamed Khaled SALAHOU & Kaihua LIU, 2018. "Effects of micro-nano bubble aerated irrigation and nitrogen fertilizer level on tillering, nitrogen uptake and utilization of early rice," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(7), pages 297-302.
    7. Maestre-Valero, J.F. & Gonzalez-Ortega, M.J. & Martinez-Alvarez, V. & Gallego-Elvira, B. & Conesa-Jodar, F.J. & Martin-Gorriz, B., 2019. "Revaluing the nutrition potential of reclaimed water for irrigation in southeastern Spain," Agricultural Water Management, Elsevier, vol. 218(C), pages 174-181.
    8. Huanhuan Zhang & Jinshan Xi & Qi Lv & Junwu Wang & Kun Yu & Fengyun Zhao, 2022. "Effect of Aerated Irrigation on the Growth and Rhizosphere Soil Fungal Community Structure of Greenhouse Grape Seedlings," Sustainability, MDPI, vol. 14(19), pages 1-16, October.
    9. Imbernón-Mulero, Alberto & Gallego-Elvira, Belén & Martínez-Alvarez, Victoriano & Acosta, José A. & Antolinos, Vera & Robles, Juan M. & Navarro, Josefa M. & Maestre-Valero, José F., 2024. "Irrigation of young grapefruits with desalinated seawater: Agronomic and economic outcomes," Agricultural Water Management, Elsevier, vol. 299(C).
    10. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    11. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Bastida, F. & Torres, I.F. & Abadía, J. & Romero-Trigueros, C. & Ruiz-Navarro, A. & Alarcón, J.J. & García, C. & Nicolás, E., 2018. "Comparing the impacts of drip irrigation by freshwater and reclaimed wastewater on the soil microbial community of two citrus species," Agricultural Water Management, Elsevier, vol. 203(C), pages 53-62.
    13. Du, Ya-Dan & Niu, Wen-Quan & Gu, Xiao-Bo & Zhang, Qian & Cui, Bing-Jing & Zhao, Ying, 2018. "Crop yield and water use efficiency under aerated irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 210(C), pages 158-164.
    14. Yudi Wu & Simeng Li & Gang Chen, 2024. "Hydrogels as water and nutrient reservoirs in agricultural soil: a comprehensive review of classification, performance, and economic advantages," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 24653-24685, October.
    15. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    16. Díaz, F.J. & Grattan, S.R. & Reyes, J.A. & de la Roza-Delgado, B. & Benes, S.E. & Jiménez, C. & Dorta, M. & Tejedor, M., 2018. "Using saline soil and marginal quality water to produce alfalfa in arid climates," Agricultural Water Management, Elsevier, vol. 199(C), pages 11-21.
    17. Zhang, Zhe & Yang, Runya & Sun, Junna & Li, Yanni & Geng, Yajun & Pan, Yinghua & Zhang, Zhenhua, 2024. "Root-zone aeration improves fruit yield and quality of tomato by enhancement of leaf photosynthetic performance," Agricultural Water Management, Elsevier, vol. 291(C).
    18. Zhao, Jianyu & Meng, Chaobiao & Yang, Kaijing & Shock, Clinton C. & Wang, Ning & Wang, Fengxin, 2024. "The use of small emitter flow rate in drip irrigation favored methane uptake in arid potato fields," Agricultural Water Management, Elsevier, vol. 291(C).
    19. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    20. Dorta-Santos, María & Tejedor, Marisa & Jiménez, Concepción & Hernández-Moreno, Jose M. & Díaz, Francisco J., 2016. "“Using marginal quality water for an energy crop in arid regions: Effect of salinity and boron distribution patterns”," Agricultural Water Management, Elsevier, vol. 171(C), pages 142-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:245:y:2021:i:c:s0378377420322083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.