IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2703-d338815.html
   My bibliography  Save this article

Aerated Irrigation of Different Irrigation Levels and Subsurface Dripper Depths Affects Fruit Yield, Quality and Water Use Efficiency of Greenhouse Tomato

Author

Listed:
  • Yan Zhu

    (Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
    College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
    Institute of Water-Saving Agriculture in Arid Areas of China (IWSA), Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China)

  • Huanjie Cai

    (Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
    College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
    Institute of Water-Saving Agriculture in Arid Areas of China (IWSA), Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China)

  • Libing Song

    (Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
    College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
    Institute of Water-Saving Agriculture in Arid Areas of China (IWSA), Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China)

  • Xiaowen Wang

    (Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
    College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
    Institute of Water-Saving Agriculture in Arid Areas of China (IWSA), Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China)

  • Zihui Shang

    (Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
    College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
    Institute of Water-Saving Agriculture in Arid Areas of China (IWSA), Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China)

  • Yanan Sun

    (Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
    College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
    Institute of Water-Saving Agriculture in Arid Areas of China (IWSA), Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China)

Abstract

Aerated irrigation (AI) is a method to mitigate rhizosphere hypoxia caused by the wetting front from subsurface drip irrigation (SDI). This study evaluated the impacts of AI on soil aeration, plant growth performance, fruit yield (tomato), irrigation water use efficiency (IWUE), fruit nutrition (lycopene and Vitamin C (VC)) and taste (soluble sugar, organic acid and sugar–acid ratio) quality. A three-factorial experiment including AI and SDI at three irrigation levels (W 0.6 , W 0.8 and W 1.0 , corresponding with crop-pan coefficients of 0.6, 0.8 and 1.0) and two dripper depths (D 15 and D 25 , burial at 15 and 25 cm, respectively), totaling 12 treatments overall, was conducted in a greenhouse during the tomato-growing season (April–July) in 2016. The AI improved soil aeration conditions, with significantly increased soil oxygen concentration and air-filled porosity relative to SDI. Moreover, the AI improved crop growth performance, with increased root morphology (diameter, length density, surface area and volume density), delayed flowering time, prolonged flowering duration and increased shoot (leaf, stem and fruit) dry weight, and harvest index. Fruit yield per plant, fruit weight, IWUE, the contents of lycopene, VC and soluble sugar, and sugar–acid ratio significantly increased under AI treatments ( P < 0.05). As the irrigation level increased, fruit yield, number, and weight increased ( P < 0.05), but IWUE and fruit lycopene, soluble sugar, and organic acid content decreased ( P < 0.05). The dripper depth had no significant impact on fruit yield, nutrition and taste quality. Principal component analysis revealed that the optimal three treatments in terms of fruit yield, IWUE, and nutrition and taste quality were the treatments W 0.6 D 25 AI, W 1.0 D 25 AI and W 1.0 D 15 AI. These results suggest that AI can improve tomato growth performance and increase fruit yield, nutrition and taste quality, and IWUE through enhancing soil aeration conditions.

Suggested Citation

  • Yan Zhu & Huanjie Cai & Libing Song & Xiaowen Wang & Zihui Shang & Yanan Sun, 2020. "Aerated Irrigation of Different Irrigation Levels and Subsurface Dripper Depths Affects Fruit Yield, Quality and Water Use Efficiency of Greenhouse Tomato," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2703-:d:338815
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Friedman, S.P. & Naftaliev, B., 2012. "A survey of the aeration status of drip-irrigated orchards," Agricultural Water Management, Elsevier, vol. 115(C), pages 132-147.
    2. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Qiu, Rangjian & Guo, Ping & Chen, Renqiang, 2013. "Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages," Agricultural Water Management, Elsevier, vol. 129(C), pages 152-162.
    3. Smith, R.J. & Raine, S.R. & Minkevich, J., 2005. "Irrigation application efficiency and deep drainage potential under surface irrigated cotton," Agricultural Water Management, Elsevier, vol. 71(2), pages 117-130, February.
    4. Wang, Feng & Kang, Shaozhong & Du, Taisheng & Li, Fusheng & Qiu, Rangjian, 2011. "Determination of comprehensive quality index for tomato and its response to different irrigation treatments," Agricultural Water Management, Elsevier, vol. 98(8), pages 1228-1238, May.
    5. Ben-Noah, I. & Friedman, S.P., 2016. "Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments," Agricultural Water Management, Elsevier, vol. 176(C), pages 222-233.
    6. Payero, José O. & Tarkalson, David D. & Irmak, Suat & Davison, Don & Petersen, James L., 2008. "Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate," Agricultural Water Management, Elsevier, vol. 95(8), pages 895-908, August.
    7. Du, Ya-Dan & Niu, Wen-Quan & Gu, Xiao-Bo & Zhang, Qian & Cui, Bing-Jing & Zhao, Ying, 2018. "Crop yield and water use efficiency under aerated irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 210(C), pages 158-164.
    8. Hanson, B. & May, D., 2004. "Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability," Agricultural Water Management, Elsevier, vol. 68(1), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xian Liu & Yueyue Xu & Shikun Sun & Xining Zhao & Yubao Wang, 2022. "Analysis of the Coupling Characteristics of Water Resources and Food Security: The Case of Northwest China," Agriculture, MDPI, vol. 12(8), pages 1-19, July.
    2. Ouyang, Zan & Tian, Juncang & Yan, Xinfang & Shen, Hui, 2021. "Effects of different concentrations of dissolved oxygen on the growth, photosynthesis, yield and quality of greenhouse tomatoes and changes in soil microorganisms," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Yatao Xiao & Chaoxiang Sun & Dezhe Wang & Huiqin Li & Wei Guo, 2023. "Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace," Agriculture, MDPI, vol. 13(7), pages 1-18, July.
    4. Zhang, Zhe & Yang, Runya & Sun, Junna & Li, Yanni & Geng, Yajun & Pan, Yinghua & Zhang, Zhenhua, 2024. "Root-zone aeration improves fruit yield and quality of tomato by enhancement of leaf photosynthetic performance," Agricultural Water Management, Elsevier, vol. 291(C).
    5. Xufeng Li & Juanjuan Ma & Lijian Zheng & Jinping Chen & Xihuan Sun & Xianghong Guo, 2022. "Optimization of the Regulated Deficit Irrigation Strategy for Greenhouse Tomato Based on the Fuzzy Borda Model," Agriculture, MDPI, vol. 12(3), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    2. Zhenzhen Yu & Chun Wang & Huafen Zou & Hongxuan Wang & Hailiang Li & Haitian Sun & Deshui Yu, 2022. "The Effects of Aerated Irrigation on Soil Respiration and the Yield of the Maize Root Zone," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    3. Huanhuan Zhang & Jinshan Xi & Qi Lv & Junwu Wang & Kun Yu & Fengyun Zhao, 2022. "Effect of Aerated Irrigation on the Growth and Rhizosphere Soil Fungal Community Structure of Greenhouse Grape Seedlings," Sustainability, MDPI, vol. 14(19), pages 1-16, October.
    4. Wu, Zhuqing & Fan, Yaqiong & Qiu, Yuan & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2022. "Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Guo, Lijie & Cao, Hongxia & Helgason, Warren D. & Yang, Hui & Wu, Xuanyi & Li, Hongzheng, 2022. "Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    7. Yao, Zhenzhu & Hou, Xuemin & Wang, Yu & Du, Taisheng, 2023. "Regulation of tomato yield and fruit quality by alternate partial root-zone irrigation strongly depends on truss positions," Agricultural Water Management, Elsevier, vol. 282(C).
    8. Gong, Xuewen & Li, Xiaoming & Qiu, Rangjian & Bo, Guokui & Ping, Yinglu & Xin, Qingsong & Ge, Jiankun, 2022. "Ventilation and irrigation management strategy for tomato cultivated in greenhouses," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Qiu, Rangjian & Chen, Renqiang & Gu, Feng, 2014. "Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition," Agricultural Water Management, Elsevier, vol. 146(C), pages 131-148.
    11. Irmak, Suat, 2024. "Maize response to different subsurface drip irrigation management strategies: Yield, production functions, basal and crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 300(C).
    12. Bai, Youshuai & Zhang, Hengjia & Jia, Shenghai & Huang, Caixia & Zhao, Xia & Wei, Huiqin & Yang, Shurui & Ma, Yan & Kou, Rui, 2022. "Plastic film mulching combined with sand tube irrigation improved yield, water use efficiency, and fruit quality of jujube in an arid desert area of Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    13. Ben-Noah, Ilan & Nitsan, Ido & Cohen, Ben & Kaplan, Guy & Friedman, Shmulik P., 2021. "Soil aeration using air injection in a citrus orchard with shallow groundwater," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Indranil Samui & Milan Skalicky & Sukamal Sarkar & Koushik Brahmachari & Sayan Sau & Krishnendu Ray & Akbar Hossain & Argha Ghosh & Manoj Kumar Nanda & Richard W. Bell & Mohammed Mainuddin & Marian Br, 2020. "Yield Response, Nutritional Quality and Water Productivity of Tomato ( Solanum lycopersicum L.) are Influenced by Drip Irrigation and Straw Mulch in the Coastal Saline Ecosystem of Ganges Delta, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    15. Li, Bo & Wim, Voogt & Shukla, Manoj Kumar & Du, Taisheng, 2021. "Drip irrigation provides a trade-off between yield and nutritional quality of tomato in the solar greenhouse," Agricultural Water Management, Elsevier, vol. 249(C).
    16. Wang, Chenxia & Gu, Feng & Chen, Jinliang & Yang, Hui & Jiang, Jingjing & Du, Taisheng & Zhang, Jianhua, 2015. "Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies," Agricultural Water Management, Elsevier, vol. 161(C), pages 9-19.
    17. Kuşçu, Hayrettin & Turhan, Ahmet & Demir, Ali Osman, 2014. "The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 133(C), pages 92-103.
    18. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.
    19. Sun, Yanan & Duan, Linbo & Zhong, Huayu & Cai, Huanjie & Xu, Jiatun & Li, Zhijun, 2024. "Effects of irrigation-fertilization-aeration coupling on yield and quality of greenhouse tomatoes," Agricultural Water Management, Elsevier, vol. 299(C).
    20. Yuan Li & Zhenxing Zhang & Jingwei Wang & Mingzhi Zhang, 2022. "Soil Aeration and Plastic Film Mulching Increase the Yield Potential and Quality of Tomato ( Solanum lycopersicum )," Agriculture, MDPI, vol. 12(2), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2703-:d:338815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.