IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i12p2140-d1001752.html
   My bibliography  Save this article

Overexpressing OsPYL/RCAR7 Improves Drought Tolerance of Maize Seedlings by Reducing Stomatal Conductance

Author

Listed:
  • Joon Ki Hong

    (Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, 370 Nongsaengmyeong-ro, Jeonju 54874, Republic of Korea)

  • Yeon-Hee Lee

    (Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, 370 Nongsaengmyeong-ro, Jeonju 54874, Republic of Korea
    Present address: LaSemilla Co., Ltd., 1447 Pyeongchang-daero, Daehwa-myeon, Pyeongchang-gun 25354, Gangwon-do, Republic of Korea.)

  • Beom-Gi Kim

    (Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, 370 Nongsaengmyeong-ro, Jeonju 54874, Republic of Korea)

  • Gang Seob Lee

    (Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, 370 Nongsaengmyeong-ro, Jeonju 54874, Republic of Korea)

  • Hee Jeung Jang

    (Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, 370 Nongsaengmyeong-ro, Jeonju 54874, Republic of Korea)

  • Giha Song

    (Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, 370 Nongsaengmyeong-ro, Jeonju 54874, Republic of Korea)

  • Eun Jung Suh

    (Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, 370 Nongsaengmyeong-ro, Jeonju 54874, Republic of Korea)

  • Sang Ryeol Park

    (Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, 370 Nongsaengmyeong-ro, Jeonju 54874, Republic of Korea)

Abstract

Drought stress is a serious abiotic factor limiting the quality and yield of maize ( Zea mays ). To produce maize plants with enhanced drought tolerance, we generated transgenic maize plants overexpressing OsPYL/RCAR7 , encoding an abscisic acid receptor. We crossed the selected lines with maize variety B73 and obtained F1 hybrid seeds. Initial screening suggested that the transgenic lines were more drought tolerant than wild-type plants. Analysis using the DroughtSpotter platform indicated that expressing OsPYL/RCAR7 enhanced drought resistance in transgenic maize seedlings by reducing water loss. In addition, the stomatal conductance of the leaf surface was 30% lower in OsPYL/RCAR7 -overexpressing plants than in wild-type ones. After drought treatment, OsPYL/RCAR7 -overexpressing maize showed a much higher survival rate than the wild type, suggesting that expressing OsPYL/RCAR7 reduced the negative effects of drought exposure on stomatal conductance and enhanced water use efficiency. Furthermore, the expression levels of drought-tolerance–related abscisic acid–signaling genes ABP2 and RAB16A were higher in the transgenic plants than in the wild type. Taken together, our data indicate that the seedlings of transgenic maize expressing the gene OsPYL/RCAR7 showed increased tolerance to drought stress, raising the possibility that stress-related genes from monocotyledonous crops could be used as genetic resources to improve the agricultural traits of maize.

Suggested Citation

  • Joon Ki Hong & Yeon-Hee Lee & Beom-Gi Kim & Gang Seob Lee & Hee Jeung Jang & Giha Song & Eun Jung Suh & Sang Ryeol Park, 2022. "Overexpressing OsPYL/RCAR7 Improves Drought Tolerance of Maize Seedlings by Reducing Stomatal Conductance," Agriculture, MDPI, vol. 12(12), pages 1-14, December.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2140-:d:1001752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/12/2140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/12/2140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sang-Youl Park & Francis C. Peterson & Assaf Mosquna & Jin Yao & Brian F. Volkman & Sean R. Cutler, 2015. "Agrochemical control of plant water use using engineered abscisic acid receptors," Nature, Nature, vol. 520(7548), pages 545-548, April.
    2. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    3. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    4. Joon Ki Hong & Eun Jung Suh & Sang Ryeol Park & Jihee Park & Yeon-Hee Lee, 2021. "Multiplex CRISPR/Cas9 Mutagenesis of BrVRN1 Delays Flowering Time in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis )," Agriculture, MDPI, vol. 11(12), pages 1-15, December.
    5. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    2. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    3. Anna Jędrejek & Rafał Pudełko, 2023. "Exploring the Potential Use of Sentinel-1 and 2 Satellite Imagery for Monitoring Winter Wheat Growth under Agricultural Drought Conditions in North-Western Poland," Agriculture, MDPI, vol. 13(9), pages 1-17, September.
    4. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    5. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    6. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," AMSE Working Papers 2308, Aix-Marseille School of Economics, France.
    7. Nabeel Bani Hani & Fakher J. Aukour & Mohammed I. Al-Qinna, 2022. "Investigating the Pearl Millet ( Pennisetum glaucum ) as a Climate-Smart Drought-Tolerant Crop under Jordanian Arid Environments," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    8. Dingcai Yin & Xiaohua Gou & Haijiang Yang & Kai Wang & Jie Liu & Yiran Zhang & Linlin Gao, 2023. "Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau," Climatic Change, Springer, vol. 176(6), pages 1-18, June.
    9. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    11. L. Lin & A. Gettelman & Q. Fu & Y. Xu, 2018. "Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols," Climatic Change, Springer, vol. 146(3), pages 407-422, February.
    12. Adeline Bichet & Arona Diedhiou & Benoit Hingray & Guillaume Evin & N’Datchoh Evelyne Touré & Klutse Nana Ama Browne & Kouakou Kouadio, 2020. "Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA," Climatic Change, Springer, vol. 162(2), pages 583-601, September.
    13. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    14. Yu, Chaoqing & Huang, Xiao & Chen, Han & Huang, Guorui & Ni, Shaoqiang & Wright, Jonathon S. & Hall, Jim & Ciais, Philippe & Zhang, Jie & Xiao, Yuchen & Sun, Zhanli & Wang, Xuhui & Yu, Le, 2018. "Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 6, pages 689-703.
    15. Yuan Li & Yi Dong & Dongqin Yin & Diyou Liu & Pengxin Wang & Jianxi Huang & Zhe Liu & Hongshuo Wang, 2020. "Evaluation of Drought Monitoring Effect of Winter Wheat in Henan Province of China Based on Multi-Source Data," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    16. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    17. Jing Peng & Li Dan & Jinming Feng & Kairan Ying & Xiba Tang & Fuqiang Yang, 2021. "Absolute Contribution of the Non-Uniform Spatial Distribution of Atmospheric CO 2 to Net Primary Production through CO 2 -Radiative Forcing," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    18. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    19. Huailei Cheng & Yuhong Wang & Dan Chong & Chao Xia & Lijun Sun & Jenny Liu & Kun Gao & Ruikang Yang & Tian Jin, 2023. "Truck platooning reshapes greenhouse gas emissions of the integrated vehicle-road infrastructure system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2140-:d:1001752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.