IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i12p2119-d999299.html
   My bibliography  Save this article

Design of a Machine Vision-Based Automatic Digging Depth Control System for Garlic Combine Harvester

Author

Listed:
  • Anlan Ding

    (School of Management and Engineering, Nanjing University, Nanjing 210093, China)

  • Baoliang Peng

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Ke Yang

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Yanhua Zhang

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Xiaoxuan Yang

    (School of Management and Engineering, Nanjing University, Nanjing 210093, China)

  • Xiuguo Zou

    (College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China)

  • Zhangqing Zhu

    (School of Management and Engineering, Nanjing University, Nanjing 210093, China)

Abstract

The digging depth is an important factor affecting the mechanized garlic harvesting quality. At present, the digging depth of the garlic combine harvester (GCH) is adjusted manually, which leads to disadvantages such as slow response, poor accuracy, and being very dependent on the operator’s experience. To solve this problem, this paper proposes a machine vision-based automatic digging depth control system for the original garlic digging device. The system uses the improved YOLOv5 algorithm to calculate the length of the garlic root at the front end of the clamping conveyor chain in real-time, and the calculation result is sent back to the system as feedback. Then, the STM32 microcontroller is used to control the digging depth by expanding and contracting the electric putter of the garlic digging device. The experimental results of the presented control system show that the detection time of the system is 30.4 ms, the average accuracy of detection is 99.1%, and the space occupied by the model deployment is 11.4 MB, which suits the design of the real-time detection of the system. Moreover, the length of the excavated garlic roots is shorter than that of the system before modification, which represents a lower energy consumption of the system and a lower rate of impurities in harvesting, and the modified system is automatically controlled, reducing the operator’s workload.

Suggested Citation

  • Anlan Ding & Baoliang Peng & Ke Yang & Yanhua Zhang & Xiaoxuan Yang & Xiuguo Zou & Zhangqing Zhu, 2022. "Design of a Machine Vision-Based Automatic Digging Depth Control System for Garlic Combine Harvester," Agriculture, MDPI, vol. 12(12), pages 1-19, December.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2119-:d:999299
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/12/2119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/12/2119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chuandong Zhang & Huali Ding & Qinfeng Shi & Yunfei Wang, 2022. "Grape Cluster Real-Time Detection in Complex Natural Scenes Based on YOLOv5s Deep Learning Network," Agriculture, MDPI, vol. 12(8), pages 1-12, August.
    2. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    3. Shuofeng Li & Bing Li & Jin Li & Bin Liu & Xin Li, 2022. "Semantic Segmentation Algorithm of Rice Small Target Based on Deep Learning," Agriculture, MDPI, vol. 12(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Marcin Witczak & Marcin Mrugalski & Bogdan Lipiec, 2021. "Remaining Useful Life Prediction of MOSFETs via the Takagi–Sugeno Framework," Energies, MDPI, vol. 14(8), pages 1-23, April.
    6. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Luo, Hao & Yin, Shen, 2023. "An integrated multi-head dual sparse self-attention network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    8. Yaping Li & Enrico Zio & Ershun Pan, 2021. "An MEWMA-based segmental multivariate hidden Markov model for degradation assessment and prediction," Journal of Risk and Reliability, , vol. 235(5), pages 831-844, October.
    9. Zhuang, Jichao & Jia, Minping & Ding, Yifei & Ding, Peng, 2021. "Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
    11. Weeber, Christoph, 2024. "Development of a cost optimal predictive maintenance strategy," Junior Management Science (JUMS), Junior Management Science e. V., vol. 9(3), pages 1805-1835.
    12. Nadire Cavus & Yakubu Bala Mohammed & Mohammed Nasiru Yakubu, 2021. "An Artificial Intelligence-Based Model for Prediction of Parameters Affecting Sustainable Growth of Mobile Banking Apps," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    13. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Zhuang, Liangliang & Xu, Ancha & Wang, Xiao-Lin, 2023. "A prognostic driven predictive maintenance framework based on Bayesian deep learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.
    16. Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Xiaojia Wang & Ting Huang & Keyu Zhu & Xibin Zhao, 2022. "LSTM-Based Broad Learning System for Remaining Useful Life Prediction," Mathematics, MDPI, vol. 10(12), pages 1-13, June.
    18. Zhou, Kai-Li & Cheng, De-Jun & Zhang, Han-Bing & Hu, Zhong-tai & Zhang, Chun-Yan, 2023. "Deep learning-based intelligent multilevel predictive maintenance framework considering comprehensive cost," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    20. Bae, Jinwoo & Xi, Zhimin, 2022. "Learning of physical health timestep using the LSTM network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2119-:d:999299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.