IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i6p532-d571654.html
   My bibliography  Save this article

Evaluation of the Effect of Different Hand-Held Sprayer Types on a Greenhouse Pepper Crop

Author

Listed:
  • Julián Sánchez-Hermosilla

    (Department of Agricultural Engineering, Agrifood Campus of International Excellence (CeiA3), Research Center CIMEDES, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain)

  • Victor J. Rincón

    (Department of Agricultural Engineering, Agrifood Campus of International Excellence (CeiA3), Research Center CIMEDES, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain)

  • Francisco C. Páez

    (Research Centre “IFAPA-Cabra”, Andalusian Government, 14940 Cabra, Spain)

  • José Pérez-Alonso

    (Department of Agricultural Engineering, Agrifood Campus of International Excellence (CeiA3), Research Center CIMEDES, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain)

  • Ángel-Jesús Callejón-Ferre

    (Department of Agricultural Engineering, Agrifood Campus of International Excellence (CeiA3), Research Center CIMEDES, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain)

Abstract

The cultivation of vegetables in greenhouses is characterised by high planting density and environmental conditions that favour the development of pests and diseases. These are mainly controlled using plant protection products applied with a hand-held sprayer. This is inefficient low-tech equipment that is difficult to calibrate. The study evaluates one hand-held spray gun and two hand-held spray lances that are widely used in greenhouse vegetable crops. The tests were carried out on a pepper crop at two different developmental stages. Plant canopy deposition and losses to the ground were quantified using a colorimetric method based on applying a tartrazine solution. The results show that the flat-fan spray lance obtains a more uniform spray distribution in the plant canopy and results in losses to the ground that are between 2 and 2.75 times less than when using the other hand-held sprayers tested.

Suggested Citation

  • Julián Sánchez-Hermosilla & Victor J. Rincón & Francisco C. Páez & José Pérez-Alonso & Ángel-Jesús Callejón-Ferre, 2021. "Evaluation of the Effect of Different Hand-Held Sprayer Types on a Greenhouse Pepper Crop," Agriculture, MDPI, vol. 11(6), pages 1-10, June.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:6:p:532-:d:571654
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/6/532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/6/532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emanuele Cerruto & Giuseppe Manetto & Francesco Santoro & Simone Pascuzzi, 2018. "Operator Dermal Exposure to Pesticides in Tomato and Strawberry Greenhouses from Hand-Held Sprayers," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    2. Sabina Failla & Elio Romano, 2020. "Effect of Spray Application Technique on Spray Deposition and Losses in a Greenhouse Vegetable Nursery," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2020. "The Concept of a Compact Profile Agricultural Tractor Suitable for Use on Specialised Tree Crops," Agriculture, MDPI, vol. 10(4), pages 1-10, April.
    2. Shaoqing Xu & Yuru Feng & Leng Han & Xiangkai Ran & Yuan Zhong & Ye Jin & Jianli Song, 2023. "Evaluation of the Wind Field and Deposition Effect of a Novel Air-Assisted Strawberry Sprayer," Agriculture, MDPI, vol. 13(2), pages 1-14, January.
    3. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Francesco Santoro & Alexandros Sotirios Anifantis & Ievhen Ihnatiev, 2020. "Performance Assessment of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 13(14), pages 1-12, July.
    4. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Zinoviy Ruzhylo & Ivan Fedosiy & Francesco Santoro, 2020. "A New Spiral Potato Cleaner to Enhance the Removal of Impurities and Soil Clods in Potato Harvesting," Sustainability, MDPI, vol. 12(23), pages 1-19, November.
    5. Simone Pascuzzi & Volodymyr Bulgakov & Francesco Santoro & Alexandros Sotirios Anifantis & Semjons Ivanovs & Ivan Holovach, 2020. "A Study on the Drift of Spray Droplets Dipped in Airflows with Different Directions," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    6. Francesco Santoro & Alexandros Sotirios Anifantis & Giuseppe Ruggiero & Vladislav Zavadskiy & Simone Pascuzzi, 2019. "Lightning Protection Systems Suitable for Stables: A Case Study," Agriculture, MDPI, vol. 9(4), pages 1-7, April.
    7. Volodymyr Bulgakov & Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2019. "Oscillations Analysis of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 12(14), pages 1-14, July.
    8. Fraz Ahmad Khan & Abdul Ghafoor & Muhammad Azam Khan & Muhammad Umer Chattha & Farzaneh Khorsandi Kouhanestani, 2022. "Parameter Optimization of Newly Developed Self-Propelled Variable Height Crop Sprayer Using Response Surface Methodology (RSM) Approach," Agriculture, MDPI, vol. 12(3), pages 1-19, March.
    9. Arrigo Salvatore Guerrieri & Alexandros Sotirios Anifantis & Francesco Santoro & Simone Pascuzzi, 2019. "Study of a Large Square Baler with Innovative Technological Systems that Optimize the Baling Effectiveness," Agriculture, MDPI, vol. 9(5), pages 1-8, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:6:p:532-:d:571654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.