IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i3p330-d1582325.html
   My bibliography  Save this article

Automated Fixed System Specifically Designed for Agrochemical Applications in Protected Crops

Author

Listed:
  • Souraya Benalia

    (Dipartimento di Agraria, Università degli Studi Mediterranea di Reggio Calabria, Località Feo di Vito, 89122 Reggio Calabria, Italy)

  • Antonio Mantella

    (Dipartimento di Agraria, Università degli Studi Mediterranea di Reggio Calabria, Località Feo di Vito, 89122 Reggio Calabria, Italy)

  • Matteo Sbaglia

    (Dipartimento di Agraria, Università degli Studi Mediterranea di Reggio Calabria, Località Feo di Vito, 89122 Reggio Calabria, Italy)

  • Lorenzo M. M. Abenavoli

    (Dipartimento di Agraria, Università degli Studi Mediterranea di Reggio Calabria, Località Feo di Vito, 89122 Reggio Calabria, Italy)

  • Bruno Bernardi

    (Dipartimento di Agraria, Università degli Studi Mediterranea di Reggio Calabria, Località Feo di Vito, 89122 Reggio Calabria, Italy)

Abstract

Protected crops are intensive production systems characterized by high vegetation density, high temperatures, and high moisture, making them favorable environments for the development of pests and diseases. Consequently, these systems often require several interventions with agrochemicals to maintain profitable yields and high produce quality. However, the application of plant protection products (PPPs) in such systems is not efficient and poses environmental concerns. This study aims at analysing spray behaviour, particularly in terms of foliar deposition and losses to the ground according to spraying equipment and foliage height, focusing on a specifically designed and developed system for agrochemical application in protected crops, and comparing it with a commonly used spraying system, namely, the cannon sprayer. Such a system consists in a fixed net of tubing and anti-drip nozzles positioned at the top of the greenhouse’s apex, connected to a pneumatic sprayer ‘Special Serre 2000’ outside the greenhouse. Findings revealed a significant effect of the spraying system (Kruskal–Wallis χ 2 = 12.239, df = 1, and p -value = 0.0004681) on normalized foliar deposition, with higher values obtained using the fixed spraying system. In addition, a simulation of the spatial distribution based on the principle of inverse distance weighting (IDW) was performed for qualitative spray assessment, confirming the heterogeneity of foliar deposition over the greenhouse with both of the used equipment. In addition, losses to the ground were affected by both spraying equipment and captor position.

Suggested Citation

  • Souraya Benalia & Antonio Mantella & Matteo Sbaglia & Lorenzo M. M. Abenavoli & Bruno Bernardi, 2025. "Automated Fixed System Specifically Designed for Agrochemical Applications in Protected Crops," Agriculture, MDPI, vol. 15(3), pages 1-15, February.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:330-:d:1582325
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/3/330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/3/330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muyesaier Tudi & Huada Daniel Ruan & Li Wang & Jia Lyu & Ross Sadler & Des Connell & Cordia Chu & Dung Tri Phung, 2021. "Agriculture Development, Pesticide Application and Its Impact on the Environment," IJERPH, MDPI, vol. 18(3), pages 1-23, January.
    2. Sabina Failla & Elio Romano, 2020. "Effect of Spray Application Technique on Spray Deposition and Losses in a Greenhouse Vegetable Nursery," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Chen & Jie Zhang & Hongtao Wang & Lingyun Li & Meizhen Yin & Jie Shen & Shuo Yan & Baoyou Liu, 2024. "Preparation of Nanoscale Indoxacarb by Using Star Polymer for Efficiency Pest Management," Agriculture, MDPI, vol. 14(7), pages 1-16, June.
    2. Jinping Li & Da Cheng & Juanjuan Huang & Jian Kang & Baohong Jin & Vojislav Novakovic & Yasong Sun, 2025. "Influence of Additives on Solar-Controlled Anaerobic and Aerobic Processes of Cow Manure and Tomato Waste," Sustainability, MDPI, vol. 17(4), pages 1-26, February.
    3. Wanglin Ma & Hongyun Zheng & Amaka Nnaji, 2023. "Cooperative membership and adoption of green pest control practices: Insights from rice farmers," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(3), pages 459-479, July.
    4. Carlos Nuévalos-Tello & Daniel Hernández-Torres & Santiago Sardinero-Roscales & Miriam Pajares-Guerra & Anna Chilton & Raimundo Jiménez-Ballesta, 2024. "Ecological Restoration Process of El Hito Saline Lagoon: Potential Biodiversity Gain in an Agro-Natural Environment," Land, MDPI, vol. 13(12), pages 1-21, November.
    5. Inês Costa-Pereira & Ana A. R. M. Aguiar & Fernanda Delgado & Cristina A. Costa, 2024. "A Methodological Framework for Assessing the Agroecological Performance of Farms in Portugal: Integrating TAPE and ACT Approaches," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    6. Philbert Mperejekumana & Lei Shen & Shuai Zhong & Fabien Muhirwa & Assa Nsabiyeze & Jean Marie Vianney Nsigayehe & Anathalie Nyirarwasa, 2023. "Assessing the Capacity of the Water–Energy–Food Nexus in Enhancing Sustainable Agriculture and Food Security in Burundi," Sustainability, MDPI, vol. 15(19), pages 1-14, September.
    7. Patricia Mussali-Galante & María Luisa Castrejón-Godínez & José Antonio Díaz-Soto & Ángela Patricia Vargas-Orozco & Héctor Miguel Quiroz-Medina & Efraín Tovar-Sánchez & Alexis Rodríguez, 2023. "Biobeds, a Microbial-Based Remediation System for the Effective Treatment of Pesticide Residues in Agriculture," Agriculture, MDPI, vol. 13(7), pages 1-25, June.
    8. Salvatore Privitera & Emanuele Cerruto & Giuseppe Manetto & Sebastian Lupica & David Nuyttens & Donald Dekeyser & Ingrid Zwertvaegher & Marconi Ribeiro Furtado Júnior & Beatriz Costalonga Vargas, 2024. "Comparison between Liquid Immersion, Laser Diffraction, PDPA, and Shadowgraphy in Assessing Droplet Size from Agricultural Nozzles," Agriculture, MDPI, vol. 14(7), pages 1-20, July.
    9. Shuang Zhang & Shaobo Liu & Qikang Zhong & Kai Zhu & Hongpeng Fu, 2024. "Assessing Eco-Environmental Effects and Its Impacts Mechanisms in the Mountainous City: Insights from Ecological–Production–Living Spaces Using Machine Learning Models in Chongqing," Land, MDPI, vol. 13(8), pages 1-24, August.
    10. Manoj Kaushal & Mary Atieno & Sylvanus Odjo & Frederick Baijukya & Yosef Gebrehawaryat & Carlo Fadda, 2025. "Nature-Positive Agriculture—A Way Forward Towards Resilient Agrifood Systems," Sustainability, MDPI, vol. 17(3), pages 1-25, January.
    11. Zheng, Yanan & Goodhue, Rachael E., 2022. "Intensive or Extensive Margin Effects? Growers’ Responses to the Restriction of High-Volatile Organic Compound (VOC) Pesticide Products in the San Joaquin Valley, California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322085, Agricultural and Applied Economics Association.
    12. Zahoor Ahmad Shah & Mushtaq Ahmad Dar & Eajaz Ahmad Dar & Chukwujekwu A. Obianefo & Arif Hussain Bhat & Mohammed Tauseef Ali & Mohamed El-Sharnouby & Mustafa Shukry & Hosny Kesba & Samy Sayed, 2022. "Sustainable Fruit Growing: An Analysis of Differences in Apple Productivity in the Indian State of Jammu and Kashmir," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
    13. Ratana Sapbamrer & Jiraporn Chittrakul, 2022. "Determinants of Consumers’ Behavior in Reducing Pesticide Residues in Vegetables and Fruits, Northern Thailand," IJERPH, MDPI, vol. 19(20), pages 1-11, October.
    14. Bahromiddin Husenov & Siham Asaad & Hafiz Muminjanov & Larisa Garkava-Gustavsson & Eva Johansson, 2021. "Sustainable Wheat Production and Food Security of Domestic Wheat in Tajikistan: Implications of Seed Health and Protein Quality," IJERPH, MDPI, vol. 18(11), pages 1-20, May.
    15. Emilia Ludwiczak & Mariusz Nietupski & Beata Gabryś & Cezary Purwin & Bożena Kordan, 2024. "Selected Chemical Parameters of Cereal Grain Influencing the Development of Rhyzopertha dominica F," Sustainability, MDPI, vol. 16(16), pages 1-15, August.
    16. Faure, Jérôme & Mouysset, Lauriane, 2025. "Natural insurance as a green alternative for farmers? Empirical evidence for semi-natural habitats and methodological bias," Ecological Economics, Elsevier, vol. 227(C).
    17. Nisreen Hassan Akkouch & Jalal Halwani & Issam Shaarani, 2025. "Exploring Pesticide Knowledge, Practices, and Health Perceptions Among Farmers in Akkar, Lebanon," IJERPH, MDPI, vol. 22(2), pages 1-14, February.
    18. Mustapha Yakubu Madaki & Mira Lehberger & Miroslava Bavorova & Boluwatife Teniola Igbasan & Harald Kächele, 2024. "Effectiveness of pesticide stakeholders’ information on pesticide handling knowledge and behaviour of smallholder farmers in Ogun State, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17185-17204, July.
    19. Muyesaier Tudi & Linsheng Yang & Li Wang & Jia Lv & Lijuan Gu & Hairong Li & Wei Peng & Qiming (Jimmy) Yu & Huada (Daniel) Ruan & Qin Li & Ross Sadler & Des Connell, 2023. "Environmental and Human Health Hazards from Chlorpyrifos, Pymetrozine and Avermectin Application in China under a Climate Change Scenario: A Comprehensive Review," Agriculture, MDPI, vol. 13(9), pages 1-27, August.
    20. Zedekiah Odira Onyando & Elizabeth Omukunda & Patrick Okoth & Sandra Khatiebi & Solomon Omwoma & Peter Otieno & Odipo Osano & Joseph Lalah, 2023. "Screening and Prioritization of Pesticide Application for Potential Human Health and Environmental Risks in Largescale Farms in Western Kenya," Agriculture, MDPI, vol. 13(6), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:330-:d:1582325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.