IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i6p490-d562069.html
   My bibliography  Save this article

Reasonable Nitrogen Fertilizer Management Improves Rice Yield and Quality under a Rapeseed/Wheat–Rice Rotation System

Author

Listed:
  • Peng Ma

    (School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 610000, China)

  • Yan Lan

    (College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China)

  • Xu Lv

    (Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China)

  • Ping Fan

    (Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China)

  • Zhiyuan Yang

    (Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China)

  • Yongjian Sun

    (Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China)

  • Rongping Zhang

    (School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 610000, China)

  • Jun Ma

    (Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China)

Abstract

To determine the influence of N fertilizer management on rice yield and rice quality under diversified rotations and establish a high-yield, high-quality, and environmentally friendly diversified planting technology, a rapeseed/wheat–rice rotation system for 2 successive years was implemented. In those rotation systems, a conventional N rate (Nc; 180 kg/hm 2 N in rape season, 150 kg/hm 2 N in wheat season) and a reduced N rate (Nr; 150 kg/hm 2 N in rape season, 120 kg/hm 2 N in wheat season) were applied. Based on an application rate of 150 kg/hm 2 N in the rice season, three N management models were applied, in which the application ratio of base:tiller:panicle fertilizer was 20%:20%:60% in treatment M1, 30%:30%:40% in treatment M2, and 40%:40%:20% in treatment M3. Zero N was used as the control (M0). The results showed that, under Nc and Nr in the rape season, M3 management produced an increase in rice yield. The average rice yields in 2018 and 2019 were 9.41 t/hm 2 and 9.54 t/hm 2 , respectively. An increase in rice peak viscosity, hot viscosity, break disintegration, and chalkiness was achieved. Under Nc and Nr in the wheat season, the panicle fertilizer of 40%:40%:20% in rice season produced a higher rice yield. The average yield was 9.45 t/hm 2 and 9.19 t/hm 2 , respectively, and an increase in rice peak viscosity, hot viscosity, and break disintegration was produced. Reduced N for rapeseed and the panicle fertilizer of 40%:40%:20% in rice season under a rapeseed–rice rotation system can be recommended to stabilize yield and ensure high-quality rice production and environmentally friendly rapeseed–rice rotation systems in southern China.

Suggested Citation

  • Peng Ma & Yan Lan & Xu Lv & Ping Fan & Zhiyuan Yang & Yongjian Sun & Rongping Zhang & Jun Ma, 2021. "Reasonable Nitrogen Fertilizer Management Improves Rice Yield and Quality under a Rapeseed/Wheat–Rice Rotation System," Agriculture, MDPI, vol. 11(6), pages 1-14, May.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:6:p:490-:d:562069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/6/490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/6/490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. JIA, Dong & LU, Jingjing & SUN, Yajun & SONG, Shuang & DU, Han & HAN, Lei, 2016. "Effect of Different Nitrogen Fertilizer Application Strategies on Rice Growth and Yield," Asian Agricultural Research, USA-China Science and Culture Media Corporation, vol. 8(01), pages 1-7, January.
    2. Wang, Jun & Wang, Dejian & Zhang, Gang & Wang, Yuan & Wang, Can & Teng, Ying & Christie, Peter, 2014. "Nitrogen and phosphorus leaching losses from intensively managed paddy fields with straw retention," Agricultural Water Management, Elsevier, vol. 141(C), pages 66-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandra Durazzo, 2021. "New Traits of Agriculture/Food Quality Interface," Agriculture, MDPI, vol. 11(12), pages 1-3, November.
    2. Kang Luo & Yongjun Zeng & Ziming Wu & Lin Guo & Xiaobing Xie & Qinghua Shi & Xiaohua Pan, 2022. "Nutrient Utilization and Double Cropping Rice Yield Response to Dense Planting with a Decreased Nitrogen Rate in Two Different Ecological Regions of South China," Agriculture, MDPI, vol. 12(6), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    2. Tu, Anguo & Xie, Songhua & Mo, Minghao & Song, Yuejun & Li, Ying, 2021. "Water budget components estimation for a mature citrus orchard of southern China based on HYDRUS-1D model," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Dong, Qiang & Dang, Tinghui & Guo, Shengli & Hao, Mingde, 2019. "Effect of different mulching measures on nitrate nitrogen leaching in spring maize planting system in south of Loess Plateau," Agricultural Water Management, Elsevier, vol. 213(C), pages 654-658.
    4. Dong, Qiang & Dang, Tinghui & Guo, Shengli & Hao, Mingde, 2019. "Effects of mulching measures on soil moisture and N leaching potential in a spring maize planting system in the southern Loess Plateau," Agricultural Water Management, Elsevier, vol. 213(C), pages 803-808.
    5. Hongyue Liang & Chen Wang & Xinrui Lu & Chunmei Sai & Yunjiang Liang, 2022. "Dynamic Changes in Soil Phosphorus Accumulation and Bioavailability in Phosphorus-Contaminated Protected Fields," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
    6. He, Yupu & Jianyun, Zhang & Shihong, Yang & Dalin, Hong & Junzeng, Xu, 2019. "Effect of controlled drainage on nitrogen losses from controlled irrigation paddy fields through subsurface drainage and ammonia volatilization after fertilization," Agricultural Water Management, Elsevier, vol. 221(C), pages 231-237.
    7. Juan Hu & Xianjiao Guan & Xihuan Liang & Binqiang Wang & Xianmao Chen & Xiaolin He & Jiang Xie & Guoqiang Deng & Ji Chen & Xiuxiu Li & Caifei Qiu & Yinfei Qian & Chunrui Peng & Kun Zhang & Jin Chen, 2024. "Optimizing the Nitrogen Fertilizer Management to Maximize the Benefit of Straw Returning on Early Rice Yield by Modulating Soil N Availability," Agriculture, MDPI, vol. 14(7), pages 1-14, July.
    8. Jiao, Jiaguo & Shi, Kun & Li, Peng & Sun, Zhen & Chang, Dali & Shen, Xueshan & Wu, Di & Song, Xiuchao & Liu, Manqiang & Li, Huixin & Hu, Feng & Xu, Li, 2018. "Assessing of an irrigation and fertilization practice for improving rice production in the Taihu Lake region (China)," Agricultural Water Management, Elsevier, vol. 201(C), pages 91-98.
    9. Zhou, Weiwei & Wang, Qunyan & Chen, Shuo & Chen, Fei & Lv, Haofeng & Li, Junliang & Chen, Qing & Zhou, Jianbin & Liang, Bin, 2024. "Nitrate leaching is the main driving factor of soil calcium and magnesium leaching loss in intensive plastic-shed vegetable production systems," Agricultural Water Management, Elsevier, vol. 293(C).
    10. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2021. "Transport and transformation of water and nitrogen under different irrigation modes and urea application regimes in paddy fields," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Du, Sicheng & Zhang, Zhongxue & Chen, Peng & Li, Tiecheng & Han, Yu & Song, Jian, 2022. "Fate of each period fertilizer N in Mollisols under water and N management: A 15N tracer study," Agricultural Water Management, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:6:p:490-:d:562069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.