IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i10p985-d652731.html
   My bibliography  Save this article

Effects of Fertilisation Using Organic Waste Products with Mineral Complementation on Sugarcane Yields and Soil Properties in a 4 Year Field Experiment

Author

Listed:
  • Frédéric Feder

    (CIRAD, UPR Recyclage et Risque, F-34398 Montpellier, France
    Recyclage et Risque, Univ Montpellier, CIRAD, F-34090 Montpellier, France)

Abstract

Sugarcane cultivation is suitable for the exploitation of organic waste products. However, minimum complementary mineral input is necessary for optimal fertilisation. Control mineral fertilisation treatments with mulch (MCM) or without mulch (MC) were compared with two organic waste treatments, a pig slurry with mulch (PSM) and without mulch (PS), and a sugarcane vinasse with mulch (SVM) and without mulch (SV) on a Nitisol in French Reunion Island. The sugarcane yields obtained with the different treatments differed each year. However, no trend was observed and no significant and recurrent effect of the presence of mulch or of the different treatments was identified over the course of the 4 year experiment. Soil pHw and pH KCl measured in the different treatments increased from year 3 in with the treatments including organic waste products (PS, PSM, SV and SVM) but remained constant with the treatments including only mineral fertilisation (MC and MCM). With the exception of PS and PSM, which were significantly higher in year 4, soil organic carbon content was not modified by the treatments. Soil cation exchange capacity increased only slightly with the PS and PSM treatments from year 3 on. The differences in yields and soil properties can be explained by the nature of the organic waste products, the accumulation of nutrients after several applications, and the specific characteristics of the sugarcane crop. The improvement in soil properties from the third year on was not reflected in the yield of sugarcane because it was too weak, and the crop explores a much larger volume of soil.

Suggested Citation

  • Frédéric Feder, 2021. "Effects of Fertilisation Using Organic Waste Products with Mineral Complementation on Sugarcane Yields and Soil Properties in a 4 Year Field Experiment," Agriculture, MDPI, vol. 11(10), pages 1-13, October.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:985-:d:652731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/10/985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/10/985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Houda Oueriemmi & Petra Susan Kidd & Carmen Trasar-Cepeda & Beatriz Rodríguez-Garrido & Rahma Inès Zoghlami & Kaouther Ardhaoui & Ángeles Prieto-Fernández & Mohamed Moussa, 2021. "Evaluation of Composted Organic Wastes and Farmyard Manure for Improving Fertility of Poor Sandy Soils in Arid Regions," Agriculture, MDPI, vol. 11(5), pages 1-19, May.
    2. Leal, Rafael Marques Pereira & Herpin, Uwe & Fonseca, Adriel Ferreira da & Firme, Lilian Pittol & Montes, Célia Regina & Melfi, Adolpho José, 2009. "Sodicity and salinity in a Brazilian Oxisol cultivated with sugarcane irrigated with wastewater," Agricultural Water Management, Elsevier, vol. 96(2), pages 307-316, February.
    3. Wassenaar, T. & Doelsch, E. & Feder, F. & Guerrin, F. & Paillat, J.-M. & Thuriès, L. & Saint Macary, H., 2014. "Returning Organic Residues to Agricultural Land (RORAL) – Fuelling the Follow-the-Technology approach," Agricultural Systems, Elsevier, vol. 124(C), pages 60-69.
    4. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavel Krasilnikov & Miguel Angel Taboada & Amanullah, 2022. "Fertilizer Use, Soil Health and Agricultural Sustainability," Agriculture, MDPI, vol. 12(4), pages 1-5, March.
    2. Oksana Puzniak & Natalia Hrynchyshyn & Tetiana Datsko & Sylwia Andruszczak & Bohdan Hulko, 2022. "Consequences of the Long-Term Fertilization System Use on Physical and Microbiological Soil Status in the Western Polissia of Ukraine," Agriculture, MDPI, vol. 12(11), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. A. Hegazi, 2015. "Influence of Soil Type, Sowing Date and Diluted Seawater Irrigation on Seed Germination, Vegetation and Chemical Constituents of Moringa oleifera, Lam," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 7(3), pages 138-138, February.
    2. Teresa Rodríguez-Espinosa & Jose Navarro-Pedreño & Ignacio Gómez Lucas & María Belén Almendro Candel & Ana Pérez Gimeno & Manuel Jordán Vidal & Iliana Papamichael & Antonis A. Zorpas, 2022. "Environmental Risk from Organic Residues," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    3. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).
    4. Pavel Krasilnikov & Miguel Angel Taboada & Amanullah, 2022. "Fertilizer Use, Soil Health and Agricultural Sustainability," Agriculture, MDPI, vol. 12(4), pages 1-5, March.
    5. Cary, L. & Surdyk, N. & Psarras, G. & Kasapakis, I. & Chartzoulakis, K. & Sandei, L. & Guerrot, C. & Pettenati, M. & Kloppmann, W., 2015. "Short-term assessment of the dynamics of elements in wastewater irrigated Mediterranean soil and tomato fruits through sequential dissolution and lead isotopic signatures," Agricultural Water Management, Elsevier, vol. 155(C), pages 87-99.
    6. Teresa Rodríguez-Espinosa & Irene Voukkali & Ana Pérez-Gimeno & María Belén Almendro Candel & J. David Hernández-Martich & Antonis A. Zorpas & Ignacio Gómez Lucas & Jose Navarro-Pedreño, 2024. "Waste as a Sustainable Source of Nutrients for Plants and Humans: A Strategy to Reduce Hidden Hunger," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    7. Pereira, B.F.F. & He, Z.L. & Stoffella, P.J. & Melfi, A.J., 2011. "Reclaimed wastewater: Effects on citrus nutrition," Agricultural Water Management, Elsevier, vol. 98(12), pages 1828-1833, October.
    8. Blum, Julius & Herpin, Uwe & Melfi, Adolpho José & Montes, Célia Regina, 2012. "Soil properties in a sugarcane plantation after the application of treated sewage effluent and phosphogypsum in Brazil," Agricultural Water Management, Elsevier, vol. 115(C), pages 203-216.
    9. Hoffecker, Elizabeth, 2021. "Understanding inclusive innovation processes in agricultural systems: A middle-range conceptual model," World Development, Elsevier, vol. 140(C).
    10. Oksana Puzniak & Natalia Hrynchyshyn & Tetiana Datsko & Sylwia Andruszczak & Bohdan Hulko, 2022. "Consequences of the Long-Term Fertilization System Use on Physical and Microbiological Soil Status in the Western Polissia of Ukraine," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    11. Blum, Julius & Melfi, Adolpho José & Montes, Célia Regina & Gomes, Tamara Maria, 2013. "Nitrogen and phosphorus leaching in a tropical Brazilian soil cropped with sugarcane and irrigated with treated sewage effluent," Agricultural Water Management, Elsevier, vol. 117(C), pages 115-122.
    12. Nicolas Bijon & Juliette Cerceau & Magali Dechesne & Guillaume Junqua & Tom Wassenaar, 2022. "What and why? Exploring rational myths of industrial symbioses in French case studies," Post-Print hal-03712860, HAL.
    13. Alrajhi, A. & Beecham, S. & Bolan, Nanthi S. & Hassanli, A., 2015. "Evaluation of soil chemical properties irrigated with recycled wastewater under partial root-zone drying irrigation for sustainable tomato production," Agricultural Water Management, Elsevier, vol. 161(C), pages 127-135.
    14. Leal, Rafael Marques Pereira & Firme, Lilian Pittol & Herpin, Uwe & da Fonseca, Adriel Ferreira & Montes, Célia Regina & dos Santos Dias, Carlos Tadeu & Melfi, Adolpho José, 2010. "Carbon and nitrogen cycling in a tropical Brazilian soil cropped with sugarcane and irrigated with wastewater," Agricultural Water Management, Elsevier, vol. 97(2), pages 271-276, February.
    15. Gonçalves, I.Z. & Barbosa, E.A.A. & Santos, L.N.S. & Nazário, A.A. & Feitosa, D.R.C. & Tuta, N.F. & Matsura, E.E., 2017. "Water relations and productivity of sugarcane irrigated with domestic wastewater by subsurface drip," Agricultural Water Management, Elsevier, vol. 185(C), pages 105-115.
    16. Elgallal, M. & Fletcher, L. & Evans, B., 2016. "Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review," Agricultural Water Management, Elsevier, vol. 177(C), pages 419-431.
    17. Manuel Matisic & Ivan Dugan & Igor Bogunovic, 2024. "Challenges in Sustainable Agriculture—The Role of Organic Amendments," Agriculture, MDPI, vol. 14(4), pages 1-25, April.
    18. Dorta-Santos, María & Tejedor, Marisa & Jiménez, Concepción & Hernández-Moreno, Jose M. & Díaz, Francisco J., 2016. "“Using marginal quality water for an energy crop in arid regions: Effect of salinity and boron distribution patterns”," Agricultural Water Management, Elsevier, vol. 171(C), pages 142-152.
    19. Díaz, Francisco J. & Tejedor, Marisa & Jiménez, Concepción & Grattan, Steve R. & Dorta, María & Hernández, José M., 2013. "The imprint of desalinated seawater on recycled wastewater: Consequences for irrigation in Lanzarote Island, Spain," Agricultural Water Management, Elsevier, vol. 116(C), pages 62-72.
    20. Rafael dos Santos Silva & Marcelo Carvalho Minhoto Teixeira Filho & Arshad Jalal & Rodrigo Silva Alves & Nathércia Castro Elias & Raimunda Eliane Nascimento do Nascimento & Cassio Hamilton Abreu-Junio, 2024. "Treating Tropical Soils with Composted Sewage Sludge Reduces the Mineral Fertilizer Requirements in Sugarcane Production," Land, MDPI, vol. 13(11), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:985-:d:652731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.