IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i7p304-d386845.html
   My bibliography  Save this article

Glyphosate Resistance in Amaranthus viridis in Brazilian Citrus Orchards

Author

Listed:
  • Ricardo Alcántara-de la Cruz

    (Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil)

  • Gabriel da Silva Amaral

    (Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil)

  • Guilherme Moraes de Oliveira

    (Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil)

  • Luiz Renato Rufino

    (Centro de Ciências Agrárias, Universidade Federal de São Carlos—Campus Araras, Araras 13604-900, Brazil)

  • Fernando Alves de Azevedo

    (Centro de Citricultura “Sylvio Moreira”, Instituto Agronômico de Campinas (IAC), Cordeirópolis 13490-970, Brazil)

  • Leonardo Bianco de Carvalho

    (School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, Brazil)

  • Maria Fátima das Graças Fernandes da Silva

    (Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil)

Abstract

Glyphosate is the main tool for weed management in Brazilian citrus orchards, where weeds, such as Conyza bonariensis and Digitaria insularis , have been found with resistance to this herbicide. Field prospections have allowed the identification of a possible new case of glyphosate resistance. In this work, the susceptibility levels to glyphosate on three Amaranthus viridis L. populations, with suspected resistance (R1, R2, and R-IAC), collected in citrus orchards from the São Paulo State, Brazil, as well as their accumulation rates of shikimic acid, were determined. The fresh weight of the susceptible population (S) was reduced by 50% (GR 50 ) with ~30 g ea ha −1 glyphosate, while the GR 50 values of the R populations were between 5.4 and 11.3 times higher than that for S population. The LD 50 (herbicide dose to kill 50% of individuals of a weed population) values of the S population were ≤150 g ea ha −1 glyphosate, while the LD 50 of the R populations ranged from 600 to 920 g ea ha −1 . Based on the reduction of fresh weight and the survival rate, the R1 population showed the highest level of glyphosate resistance, which had GR 50 and LD 50 values of 248 and 918 g ea ha −1 glyphosate, respectively. The S population accumulated 240 µg shikimic acid at 1000 µM glyphosate, while the R1, R2, and R-IAC populations accumulated only 16, 43, and 33 µg shikimic acid, respectively (between 5.6 to 15 times less than the S population). Enzyme activity assays suggested that at least one target site-type mechanism was involved in resistance. This result revealed the first report of glyphosate resistance in A. viridis reported in the world.

Suggested Citation

  • Ricardo Alcántara-de la Cruz & Gabriel da Silva Amaral & Guilherme Moraes de Oliveira & Luiz Renato Rufino & Fernando Alves de Azevedo & Leonardo Bianco de Carvalho & Maria Fátima das Graças Fernandes, 2020. "Glyphosate Resistance in Amaranthus viridis in Brazilian Citrus Orchards," Agriculture, MDPI, vol. 10(7), pages 1-10, July.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:7:p:304-:d:386845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/7/304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/7/304/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Ritz & Florent Baty & Jens C Streibig & Daniel Gerhard, 2015. "Dose-Response Analysis Using R," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Kocira & Mariola Staniak, 2021. "Weed Ecology and New Approaches for Management," Agriculture, MDPI, vol. 11(3), pages 1-6, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natasja Krog Noer & Majken Pagter & Simon Bahrndorff & Anders Malmendal & Torsten Nygaard Kristensen, 2020. "Impacts of thermal fluctuations on heat tolerance and its metabolomic basis in Arabidopsis thaliana, Drosophila melanogaster, and Orchesella cincta," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-20, October.
    2. Pâmela Carvalho-Moore & Gulab Rangani & James Heiser & Douglas Findley & Steven J. Bowe & Nilda Roma-Burgos, 2021. "PPO2 Mutations in Amaranthus palmeri : Implications on Cross-Resistance," Agriculture, MDPI, vol. 11(8), pages 1-13, August.
    3. Celia M. Gagliardi & Marc E. Normandin & Alexandra T. Keinath & Joshua B. Julian & Matthew R. Lopez & Manuel-Miguel Ramos-Alvarez & Russell A. Epstein & Isabel A. Muzzio, 2024. "Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Yirgalem Eshete & Bamlaku Alamirew & Zewdie Bishaw, 2021. "Yield and Cost Effects of Plot-Level Wheat Seed Rates and Seed Recycling Practices in the East Gojam Zone, Amhara Region, Ethiopia: Application of the Dose–Response Model," Sustainability, MDPI, vol. 13(7), pages 1-14, March.
    5. Milan Brankov & Bruno Canella Vieira & Miloš Rajković & Milena Simić & Jelena Vukadinović & Violeta Mandić & Vesna Dragičević, 2023. "Herbicide drift vs. crop resilience - the influence of micro-rates," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(4), pages 161-169.
    6. Elsa Brunet-Ratnasingham & Sacha Morin & Haley E. Randolph & Marjorie Labrecque & Justin Bélair & Raphaël Lima-Barbosa & Amélie Pagliuzza & Lorie Marchitto & Michael Hultström & Julia Niessl & Rose Cl, 2024. "Sustained IFN signaling is associated with delayed development of SARS-CoV-2-specific immunity," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Johanna Zerbib & Marica Rosaria Ippolito & Yonatan Eliezer & Giuseppina Feudis & Eli Reuveni & Anouk Savir Kadmon & Sara Martin & Sonia Viganò & Gil Leor & James Berstler & Julia Muenzner & Michael Mü, 2024. "Human aneuploid cells depend on the RAF/MEK/ERK pathway for overcoming increased DNA damage," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Min Pan & William C. Wright & Richard H. Chapple & Asif Zubair & Manbir Sandhu & Jake E. Batchelder & Brandt C. Huddle & Jonathan Low & Kaley B. Blankenship & Yingzhe Wang & Brittney Gordon & Payton A, 2021. "The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    9. Hyeong-Min Lee & William C. Wright & Min Pan & Jonathan Low & Duane Currier & Jie Fang & Shivendra Singh & Stephanie Nance & Ian Delahunty & Yuna Kim & Richard H. Chapple & Yinwen Zhang & Xueying Liu , 2023. "A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Tea Pemovska & Johannes W. Bigenzahn & Ismet Srndic & Alexander Lercher & Andreas Bergthaler & Adrián César-Razquin & Felix Kartnig & Christoph Kornauth & Peter Valent & Philipp B. Staber & Giulio Sup, 2021. "Metabolic drug survey highlights cancer cell dependencies and vulnerabilities," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    11. Amany S. Ibrahim & Gomaa A. M. Ali & Amro Hassanein & Ahmed M. Attia & Ezzat R. Marzouk, 2022. "Toxicity and Uptake of CuO Nanoparticles: Evaluation of an Emerging Nanofertilizer on Wheat ( Triticum aestivum L.) Plant," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    12. Muhammad Javaid Akhter & Solvejg Kopp Mathiassen & Zelalem Eshetu Bekalu & Henrik Brinch-Pedersen & Per Kudsk, 2021. "Increased Activity of 5-Enolpyruvylshikimate-3-phosphate Synthase (EPSPS) Enzyme Describe the Natural Tolerance of Vulpia myuros to Glyphosate in Comparison with Apera spica-venti," Agriculture, MDPI, vol. 11(8), pages 1-15, July.
    13. Travis J. Kochan & Sophia H. Nozick & Aliki Valdes & Sumitra D. Mitra & Bettina H. Cheung & Marine Lebrun-Corbin & Rachel L. Medernach & Madeleine B. Vessely & Jori O. Mills & Christopher M. R. Axline, 2023. "Klebsiella pneumoniae clinical isolates with features of both multidrug-resistance and hypervirulence have unexpectedly low virulence," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Juan Camilo Velásquez & Angela Das Cas Bundt & Edinalvo Rabaioli Camargo & André Andres & Vívian Ebeling Viana & Verónica Hoyos & Guido Plaza & Luis Antonio de Avila, 2021. "Florpyrauxifen-Benzyl Selectivity to Rice," Agriculture, MDPI, vol. 11(12), pages 1-19, December.
    15. Alexander Ingo LINN & Pavlína KOŠNAROVÁ & Josef SOUKUP & Roland GERHARDS, 2018. "Detecting herbicide-resistant Apera spica-venti with a chlorophyll fluorescence agar test," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(8), pages 386-392.
    16. Yiru Jin & Somrita Basu & Mei Feng & Yu Ning & Indeewara Munasinghe & Arline M. Joachim & Junan Li & Lingli Qin & Robert Madden & Hannah Burks & Philip Gao & Judy Qiju Wu & Salma Waheed Sheikh & April, 2024. "CYP5122A1 encodes an essential sterol C4-methyl oxidase in Leishmania donovani and determines the antileishmanial activity of antifungal azoles," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. J. M. Beman & S. M. Vargas & J. M. Wilson & E. Perez-Coronel & J. S. Karolewski & S. Vazquez & A. Yu & A. E. Cairo & M. E. White & I. Koester & L. I. Aluwihare & S. D. Wankel, 2021. "Substantial oxygen consumption by aerobic nitrite oxidation in oceanic oxygen minimum zones," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    18. Florian P. Bayer & Manuel Gander & Bernhard Kuster & Matthew The, 2023. "CurveCurator: a recalibrated F-statistic to assess, classify, and explore significance of dose–response curves," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Ignacio Amaro-Blanco & Yolanda Romano & Jose Antonio Palmerin & Raquel Gordo & Candelario Palma-Bautista & Rafael De Prado & María Dolores Osuna, 2021. "Different Mutations Providing Target Site Resistance to ALS- and ACCase-Inhibiting Herbicides in Echinochloa spp. from Rice Fields," Agriculture, MDPI, vol. 11(5), pages 1-12, April.
    20. Alexandra Schappert & Alexander I. Linn & Dominic J. Sturm & Roland Gerhards, 2019. "Weed suppressive ability of cover crops under water-limited conditions," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(11), pages 541-548.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:7:p:304-:d:386845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.