IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47941-x.html
   My bibliography  Save this article

Dynamic diversity of SARS-CoV-2 genetic mutations in a lung transplantation patient with persistent COVID-19

Author

Listed:
  • Hidetoshi Igari

    (Department of Infectious Diseases, Chiba University Hospital
    Chiba University Hospital
    Chiba University Hospital
    Research Institute of Disaster Medicine, Chiba University)

  • Seiichiro Sakao

    (Department of Respiratory Medicine, Chiba University Hospital
    Department of Pulmonary Medicine, School of Medicine, International University of Health and Welfare)

  • Takayuki Ishige

    (Chiba University Hospital)

  • Kengo Saito

    (Department of Molecular Virology, Graduate School of Medicine, Chiba University)

  • Shota Murata

    (Chiba University Hospital)

  • Misuzu Yahaba

    (Department of Infectious Diseases, Chiba University Hospital)

  • Toshibumi Taniguchi

    (Department of Infectious Diseases, Chiba University Hospital
    Research Institute of Disaster Medicine, Chiba University)

  • Akiko Suganami

    (Department of Bioinformatics, Graduate School of Medicine, Chiba University)

  • Kazuyuki Matsushita

    (Chiba University Hospital)

  • Yutaka Tamura

    (Department of Bioinformatics, Graduate School of Medicine, Chiba University)

  • Takuji Suzuki

    (Chiba University Hospital
    Department of Respiratory Medicine, Chiba University Hospital
    Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University)

  • Eiji Ido

    (Department of Infectious Diseases, Chiba University Hospital
    Department of Molecular Virology, Graduate School of Medicine, Chiba University)

Abstract

Numerous SARS-CoV-2 variant strains with altered characteristics have emerged since the onset of the COVID-19 pandemic. Remdesivir (RDV), a ribonucleotide analogue inhibitor of viral RNA polymerase, has become a valuable therapeutic agent. However, immunosuppressed hosts may respond inadequately to RDV and develop chronic persistent infections. A patient with respiratory failure caused by interstitial pneumonia, who had undergone transplantation of the left lung, developed COVID-19 caused by Omicron BA.5 strain with persistent chronic viral shedding, showing viral fusogenicity. Genome-wide sequencing analyses revealed the occurrence of several viral mutations after RDV treatment, followed by dynamic changes in the viral populations. The C799F mutation in nsp12 was found to play a pivotal role in conferring RDV resistance, preventing RDV-triphosphate from entering the active site of RNA-dependent RNA polymerase. The occurrence of diverse mutations is a characteristic of SARS-CoV-2, which mutates frequently. Herein, we describe the clinical case of an immunosuppressed host in whom inadequate treatment resulted in highly diverse SARS-CoV-2 mutations that threatened the patient’s health due to the development of drug-resistant variants.

Suggested Citation

  • Hidetoshi Igari & Seiichiro Sakao & Takayuki Ishige & Kengo Saito & Shota Murata & Misuzu Yahaba & Toshibumi Taniguchi & Akiko Suganami & Kazuyuki Matsushita & Yutaka Tamura & Takuji Suzuki & Eiji Ido, 2024. "Dynamic diversity of SARS-CoV-2 genetic mutations in a lung transplantation patient with persistent COVID-19," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47941-x
    DOI: 10.1038/s41467-024-47941-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47941-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47941-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven A. Kemp & Dami A. Collier & Rawlings P. Datir & Isabella A. T. M. Ferreira & Salma Gayed & Aminu Jahun & Myra Hosmillo & Chloe Rees-Spear & Petra Mlcochova & Ines Ushiro Lumb & David J. Roberts, 2021. "SARS-CoV-2 evolution during treatment of chronic infection," Nature, Nature, vol. 592(7853), pages 277-282, April.
    2. Shiv Gandhi & Jonathan Klein & Alexander J. Robertson & Mario A. Peña-Hernández & Michelle J. Lin & Pavitra Roychoudhury & Peiwen Lu & John Fournier & David Ferguson & Shah A. K. Mohamed Bakhash & M. , 2022. "De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Akatsuki Saito & Takashi Irie & Rigel Suzuki & Tadashi Maemura & Hesham Nasser & Keiya Uriu & Yusuke Kosugi & Kotaro Shirakawa & Kenji Sadamasu & Izumi Kimura & Jumpei Ito & Jiaqi Wu & Kiyoko Iwatsuki, 2022. "Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation," Nature, Nature, vol. 602(7896), pages 300-306, February.
    4. Christian Ritz & Florent Baty & Jens C Streibig & Daniel Gerhard, 2015. "Dose-Response Analysis Using R," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-13, December.
    5. Bo Meng & Adam Abdullahi & Isabella A. T. M. Ferreira & Niluka Goonawardane & Akatsuki Saito & Izumi Kimura & Daichi Yamasoba & Pehuén Pereyra Gerber & Saman Fatihi & Surabhi Rathore & Samantha K. Zep, 2022. "Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity," Nature, Nature, vol. 603(7902), pages 706-714, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana S. Gonzalez-Reiche & Hala Alshammary & Sarah Schaefer & Gopi Patel & Jose Polanco & Juan Manuel Carreño & Angela A. Amoako & Aria Rooker & Christian Cognigni & Daniel Floda & Adriana Guchte & Zain, 2023. "Sequential intrahost evolution and onward transmission of SARS-CoV-2 variants," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Markus Hoffmann & Lok-Yin Roy Wong & Prerna Arora & Lu Zhang & Cheila Rocha & Abby Odle & Inga Nehlmeier & Amy Kempf & Anja Richter & Nico Joel Halwe & Jacob Schön & Lorenz Ulrich & Donata Hoffmann & , 2023. "Omicron subvariant BA.5 efficiently infects lung cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Nikhil Kumar Tulsian & Raghuvamsi Venkata Palur & Xinlei Qian & Yue Gu & Bhuvaneshwari D/O Shunmuganathan & Firdaus Samsudin & Yee Hwa Wong & Jianqing Lin & Kiren Purushotorman & Mary McQueen Kozma & , 2023. "Defining neutralization and allostery by antibodies against COVID-19 variants," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    4. Haofeng Wang & Qi Yang & Xiaoce Liu & Zili Xu & Maolin Shao & Dongxu Li & Yinkai Duan & Jielin Tang & Xianqiang Yu & Yumin Zhang & Aihua Hao & Yajie Wang & Jie Chen & Chenghao Zhu & Luke Guddat & Hong, 2023. "Structure-based discovery of dual pathway inhibitors for SARS-CoV-2 entry," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Adam Abdullahi & David Oladele & Michael Owusu & Steven A. Kemp & James Ayorinde & Abideen Salako & Douglas Fink & Fehintola Ige & Isabella A. T. M. Ferreira & Bo Meng & Augustina Angelina Sylverken &, 2022. "SARS-COV-2 antibody responses to AZD1222 vaccination in West Africa," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Tomokazu Tamura & Takashi Irie & Sayaka Deguchi & Hisano Yajima & Masumi Tsuda & Hesham Nasser & Keita Mizuma & Arnon Plianchaisuk & Saori Suzuki & Keiya Uriu & Mst Monira Begum & Ryo Shimizu & Michae, 2024. "Virological characteristics of the SARS-CoV-2 Omicron XBB.1.5 variant," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Elham Khatamzas & Markus H. Antwerpen & Alexandra Rehn & Alexander Graf & Johannes Christian Hellmuth & Alexandra Hollaus & Anne-Wiebe Mohr & Erik Gaitzsch & Tobias Weiglein & Enrico Georgi & Clemens , 2022. "Accumulation of mutations in antibody and CD8 T cell epitopes in a B cell depleted lymphoma patient with chronic SARS-CoV-2 infection," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Natasja Krog Noer & Majken Pagter & Simon Bahrndorff & Anders Malmendal & Torsten Nygaard Kristensen, 2020. "Impacts of thermal fluctuations on heat tolerance and its metabolomic basis in Arabidopsis thaliana, Drosophila melanogaster, and Orchesella cincta," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-20, October.
    9. Taha Y. Taha & Irene P. Chen & Jennifer M. Hayashi & Takako Tabata & Keith Walcott & Gabriella R. Kimmerly & Abdullah M. Syed & Alison Ciling & Rahul K. Suryawanshi & Hannah S. Martin & Bryan H. Bach , 2023. "Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Sheri Harari & Danielle Miller & Shay Fleishon & David Burstein & Adi Stern, 2024. "Using big sequencing data to identify chronic SARS-Coronavirus-2 infections," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Guoli Shi & Tiansheng Li & Kin Kui Lai & Reed F. Johnson & Jonathan W. Yewdell & Alex A. Compton, 2024. "Omicron Spike confers enhanced infectivity and interferon resistance to SARS-CoV-2 in human nasal tissue," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Rana Abdelnabi & Dirk Jochmans & Kim Donckers & Bettina Trüeb & Nadine Ebert & Birgit Weynand & Volker Thiel & Johan Neyts, 2023. "Nirmatrelvir-resistant SARS-CoV-2 is efficiently transmitted in female Syrian hamsters and retains partial susceptibility to treatment," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Jolien Van Cleemput & Willem van Snippenberg & Laurens Lambrechts & Amélie Dendooven & Valentino D’Onofrio & Liesbeth Couck & Wim Trypsteen & Jan Vanrusselt & Sebastiaan Theuns & Nick Vereecke & Thier, 2021. "Organ-specific genome diversity of replication-competent SARS-CoV-2," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    14. Pâmela Carvalho-Moore & Gulab Rangani & James Heiser & Douglas Findley & Steven J. Bowe & Nilda Roma-Burgos, 2021. "PPO2 Mutations in Amaranthus palmeri : Implications on Cross-Resistance," Agriculture, MDPI, vol. 11(8), pages 1-13, August.
    15. Sissy Therese Sonnleitner & Martina Prelog & Stefanie Sonnleitner & Eva Hinterbichler & Hannah Halbfurter & Dominik B. C. Kopecky & Giovanni Almanzar & Stephan Koblmüller & Christian Sturmbauer & Leon, 2022. "Cumulative SARS-CoV-2 mutations and corresponding changes in immunity in an immunocompromised patient indicate viral evolution within the host," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Celia M. Gagliardi & Marc E. Normandin & Alexandra T. Keinath & Joshua B. Julian & Matthew R. Lopez & Manuel-Miguel Ramos-Alvarez & Russell A. Epstein & Isabel A. Muzzio, 2024. "Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    17. Yirgalem Eshete & Bamlaku Alamirew & Zewdie Bishaw, 2021. "Yield and Cost Effects of Plot-Level Wheat Seed Rates and Seed Recycling Practices in the East Gojam Zone, Amhara Region, Ethiopia: Application of the Dose–Response Model," Sustainability, MDPI, vol. 13(7), pages 1-14, March.
    18. Yuki Furuse, 2022. "Properties of the Omicron Variant of SARS-CoV-2 Affect Public Health Measure Effectiveness in the COVID-19 Epidemic," IJERPH, MDPI, vol. 19(9), pages 1-8, April.
    19. Milan Brankov & Bruno Canella Vieira & Miloš Rajković & Milena Simić & Jelena Vukadinović & Violeta Mandić & Vesna Dragičević, 2023. "Herbicide drift vs. crop resilience - the influence of micro-rates," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(4), pages 161-169.
    20. Jumpei Ito & Rigel Suzuki & Keiya Uriu & Yukari Itakura & Jiri Zahradnik & Kanako Terakado Kimura & Sayaka Deguchi & Lei Wang & Spyros Lytras & Tomokazu Tamura & Izumi Kida & Hesham Nasser & Maya Shof, 2023. "Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47941-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.