IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i3p84-d333463.html
   My bibliography  Save this article

Effects of Drip Irrigation with Plastic on Photosynthetic Characteristics and Biomass Distribution of Muskmelon

Author

Listed:
  • Jingwei Wang

    (College of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
    Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China)

  • Wenquan Niu

    (Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
    Institute of Soil and Water Conservation, CAS & MWR, Yangling, Shaanxi 712100, China)

  • Yuan Li

    (Shaanxi Normal University, Xian, Shaanxi 710119, China)

Abstract

An experiment was conducted in China to develop guidelines for the mulching drip irrigation of commercial muskmelon crops. Three sets of factors were laid out in rows to give a three × three factorial design. First, plastic covers were placed over the entire growing area (rows and inter-rows, or full), over the rows (half), or no plastic applied (none). Second, there was one irrigation pipe per row (T 1 ), three pipes for four rows (T 3/4 ), or one pipe for two rows (T 1/2 ). Finally, the plants were irrigated when the soil water content fell to 60%, 70%, or 80% of field water capacity (FC). Information was collected on net CO 2 assimilation ( Pn ), plant growth, and yield. Overall, maximum Pn occurred with half plastic covering, one irrigation pipe for two rows, and irrigation at 80% FC. Plant fresh weight was higher with half plastic covering, one irrigation pipe per row, and irrigation at 70% or 80% FC. Yield was higher with half plastic covering, and irrigation at 70% or 80% FC. There were only small differences in the yield across numbers of irrigation pipes. These results suggest that overall productivity was better with plastic covers over the rows and irrigation at 70% or 80% FC. Differences in productivity with different numbers of irrigation lines per row were small.

Suggested Citation

  • Jingwei Wang & Wenquan Niu & Yuan Li, 2020. "Effects of Drip Irrigation with Plastic on Photosynthetic Characteristics and Biomass Distribution of Muskmelon," Agriculture, MDPI, vol. 10(3), pages 1-15, March.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:3:p:84-:d:333463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/3/84/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/3/84/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jingwei & Niu, Wenquan & Guo, Lili & Liu, Lu & Li, Yuan & Dyck, Miles, 2018. "Drip irrigation with film mulch improves soil alkaline phosphatase and phosphorus uptake," Agricultural Water Management, Elsevier, vol. 201(C), pages 258-267.
    2. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Wei, Ting & Ren, Xiaolong & Zhang, Peng & Din, Ruixia & Cai, Tie & Jia, Zhikuan, 2018. "Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 201(C), pages 207-218.
    3. Liu, E.K. & Mei, X.R. & Yan, C.R. & Gong, D.Z. & Zhang, Y.Q., 2016. "Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes," Agricultural Water Management, Elsevier, vol. 167(C), pages 75-85.
    4. Zeng, Chun-Zhi & Bie, Zhi-Long & Yuan, Bao-Zhong, 2009. "Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse," Agricultural Water Management, Elsevier, vol. 96(4), pages 595-602, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yangyang & Liu, Ningning & Fan, Hua & Su, Jixia & Fei, Cong & Wang, Kaiyong & Ma, Fuyu & Kisekka, Isaya, 2019. "Effects of deficit irrigation on photosynthesis, photosynthate allocation, and water use efficiency of sugar beet," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Dong, Hao & Dong, Jiahui & Sun, Shikun & Bai, Ting & Zhao, Dongmei & Yin, Yali & Shen, Xin & Wang, Yakun & Zhang, Zhitao & Wang, Yubao, 2024. "Crop water stress detection based on UAV remote sensing systems," Agricultural Water Management, Elsevier, vol. 303(C).
    3. Fang, Heng & Liu, Fulai & Gu, Xiaobo & Chen, Pengpeng & Li, Yupeng & Li, Yuannong, 2022. "The effect of source–sink on yield and water use of winter wheat under ridge-furrow with film mulching and nitrogen fertilization," Agricultural Water Management, Elsevier, vol. 267(C).
    4. Zhuang, Tingxuan & Ata-UI-Karim, Syed Tahir & Zhao, Ben & Liu, Xiaojun & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Cao, Qiang, 2024. "Investigating the impacts of different degrees of deficit irrigation and nitrogen interactions on assimilate translocation, yield, and resource use efficiencies in winter wheat," Agricultural Water Management, Elsevier, vol. 304(C).
    5. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng, 2022. "Optimization of drip irrigation and fertilization regimes to enhance winter wheat grain yield by improving post-anthesis dry matter accumulation and translocation in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Li, Yi-Jie & Yuan, Bao-Zhong & Bie, Zhi-Long & Kang, Yaohu, 2012. "Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions," Agricultural Water Management, Elsevier, vol. 109(C), pages 30-35.
    7. Bingqian Liu & Chunchun An & Shuying Jiao & Fengyuan Jia & Ruilin Liu & Qicong Wu & Zhi Dong, 2022. "Impacts of the Inoculation of Piriformospora indica on Photosynthesis, Osmoregulatory Substances, and Antioxidant Enzymes of Alfalfa Seedlings under Cadmium Stress," Agriculture, MDPI, vol. 12(11), pages 1-13, November.
    8. Guo, Yuling & Huang, Guanmin & Wei, Zexin & Feng, Tianyu & Zhang, Kun & Zhang, Mingcai & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "Exogenous application of coronatine and alginate oligosaccharide to maize seedlings enhanced drought tolerance at seedling and reproductive stages," Agricultural Water Management, Elsevier, vol. 279(C).
    9. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    10. Yuzhao Ma & Naikun Kuang & Shengzhe Hong & Fengli Jiao & Changyuan Liu & Quanqi Li, 2021. "Water productivity of two wheat genotypes in response to no-tillage in the North China Plain," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(4), pages 236-244.
    11. Zhijie Tian & Jingpeng Li & Xueying Jia & Fu Yang & Zhichun Wang, 2016. "Assimilation and Translocation of Dry Matter and Phosphorus in Rice Genotypes Affected by Salt-Alkaline Stress," Sustainability, MDPI, vol. 8(6), pages 1-14, June.
    12. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng & Lu, Junsheng, 2022. "Quantifying nutrient stoichiometry and radiation use efficiency of two maize cultivars under various water and fertilizer management practices in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    13. Yang, Wenjia & Yan, Naitong & Zhang, Jiali & Yan, Jiakun & Ma, Dengke & Wang, Shiwen & Yin, Lina, 2022. "The applicability of water-permeable plastic film and biodegradable film as alternatives to polyethylene film in crops on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 274(C).
    14. Dai, Yulong & Fan, Junliang & Liao, Zhenqi & Zhang, Chen & Yu, Jiang & Feng, Hanlong & Zhang, Fucang & Li, Zhijun, 2022. "Supplemental irrigation and modified plant density improved photosynthesis, grain yield and water productivity of winter wheat under ridge-furrow mulching," Agricultural Water Management, Elsevier, vol. 274(C).
    15. Wang, Jun & Huang, Guanhua & Li, Jiusheng & Zheng, Jianhua & Huang, Quanzhong & Liu, Haijun, 2017. "Effect of soil moisture-based furrow irrigation scheduling on melon (Cucumis melo L.) yield and quality in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 167-176.
    16. Shen, Yan & Puig-Bargués, Jaume & Li, Mengyao & Xiao, Yang & Li, Qiang & Li, Yunkai, 2022. "Physical, chemical and biological emitter clogging behaviors in drip irrigation systems using high-sediment loaded water," Agricultural Water Management, Elsevier, vol. 270(C).
    17. Marcin Różewicz & Jerzy Grabiński & Marta Wyzińska, 2024. "Growth Parameters, Yield and Grain Quality of Different Winter Wheat Cultivars Using Strip Tillage in Relation to the Intensity of Post-Harvest Soil Cultivation," Agriculture, MDPI, vol. 14(12), pages 1-19, December.
    18. Ding, Jinli & Wu, Jicheng & Ding, Dianyuan & Yang, Yonghui & Gao, Cuimin & Hu, Wei, 2021. "Effects of tillage and straw mulching on the crop productivity and hydrothermal resource utilization in a winter wheat-summer maize rotation system," Agricultural Water Management, Elsevier, vol. 254(C).
    19. Li, Yibo & Song, He & Zhou, Li & Xu, Zhenzhu & Zhou, Guangsheng, 2019. "Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field," Agricultural Water Management, Elsevier, vol. 211(C), pages 190-201.
    20. Zhaoxin Ge & Xiuling Man & Tijiu Cai & Beixing Duan & Ruihan Xiao & Zhipeng Xu, 2022. "Environmental Factors at Different Canopy Heights Had Significant Effects on Leaf Water-Use Efficiency in Cold-Temperate Larch Forest," Sustainability, MDPI, vol. 14(9), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:3:p:84-:d:333463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.