IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v271y2022ics0378377422003298.html
   My bibliography  Save this article

Optimization of drip irrigation and fertilization regimes to enhance winter wheat grain yield by improving post-anthesis dry matter accumulation and translocation in northwest China

Author

Listed:
  • Yan, Shicheng
  • Wu, You
  • Fan, Junliang
  • Zhang, Fucang
  • Guo, Jinjin
  • Zheng, Jing
  • Wu, Lifeng

Abstract

The excessive irrigation and fertilization are common in wheat (Triticum aestivum L.) production in northwest China, which not only results in resources waste and environmental pollution, but also not necessarily guarantee high wheat yield due to the plant overgrowth. It is thus crucial to explore a suitable irrigation and fertilization strategy that benefits high-yield wheat cultivation by regulating post-anthesis dry matter accumulation and translocation. A consecutive four-season field experiment (2014–2018) was undertaken on drip-fertigated winter wheat with three irrigation levels based on the soil moisture content of moistening layers (W1: normal irrigation, W2: mild deficit irrigation, W3: severe deficit irrigation) and three fertilization (N-P2O5-K2O) rates (F1: 175–117–150 kg ha−1, F2: 125–84–108 kg ha−1, F3: 75–50–65 kg ha−1). The results showed that the logistic growth equation could well describe the accumulation process of aboveground dry matter with R2 ranging 0.989 − 0.999 (P < 0.01). Water stress advanced the thermal time required from sowing to the maximum aboveground dry matter rate, while the maximum aboveground dry matter rate and average accumulated rate of aboveground dry matter increased with the increase of irrigation and fertilization regimes. Dry matter translocation showed a negative relationship with fertilization rate. However, both the post-anthesis dry matter accumulation and its contribution to total dry matter at maturity (CDMA) increased with the increasing fertilization rate. With the increase of water and fertilizer supply, dry matter translocation efficiency decreased, but CDMA showed the opposite trend. The post-anthesis dry matter accumulation was positively related to winter wheat grain yield. When the grain yield reached above 7.5 Mg ha−1 in northwest China, the post-anthesis accumulated dry matter should be more than 4.7 Mg ha−1. It was concluded that the mild deficit irrigation along with N-P2O5-K2O fertilization of 125–84–108 kg ha−1 enhanced the productivity of winter wheat by increasing the post-anthesis dry matter translocation and accumulation.

Suggested Citation

  • Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng, 2022. "Optimization of drip irrigation and fertilization regimes to enhance winter wheat grain yield by improving post-anthesis dry matter accumulation and translocation in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003298
    DOI: 10.1016/j.agwat.2022.107782
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422003298
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Hongbo & Han, Kun & Gu, Shubo & Wang, Dong, 2019. "Effects of supplemental irrigation on the accumulation, distribution and transportation of 13C-photosynthate, yield and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 214(C), pages 1-8.
    2. Si, Zhuanyun & Zain, Muhammad & Mehmood, Faisal & Wang, Guangshuai & Gao, Yang & Duan, Aiwang, 2020. "Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    4. Li, Feng-Min & Liu, Xiao-Lan & Li, Shi-Qing, 2001. "Effects of early soil water distribution on the dry matter partition between roots and shoots of winter wheat," Agricultural Water Management, Elsevier, vol. 49(3), pages 163-171, August.
    5. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng, 2022. "Quantifying grain yield, protein, nutrient uptake and utilization of winter wheat under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 261(C).
    6. Wang, Haidong & Wu, Lifeng & Wang, Xiukang & Zhang, Shaohui & Cheng, Minghui & Feng, Hao & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen, 2021. "Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Liu, Xiaoli & Wang, Yandong & Yan, Xiaoqun & Hou, Huizhi & Liu, Pei & Cai, Tie & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong & Chen, Xiaoli, 2020. "Appropriate ridge-furrow ratio can enhance crop production and resource use efficiency by improving soil moisture and thermal condition in a semi-arid region," Agricultural Water Management, Elsevier, vol. 240(C).
    8. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Qiang, Shengcai & Zheng, Jing & Xiang, Youzhen & Guo, Jinjin & Zou, Haiyang, 2019. "Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat," Agricultural Water Management, Elsevier, vol. 213(C), pages 983-995.
    9. Liu, E.K. & Mei, X.R. & Yan, C.R. & Gong, D.Z. & Zhang, Y.Q., 2016. "Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes," Agricultural Water Management, Elsevier, vol. 167(C), pages 75-85.
    10. Jiang, Tengcong & Liu, Jian & Gao, Yujing & Sun, Zhe & Chen, Shang & Yao, Ning & Ma, Haijiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2020. "Simulation of plant height of winter wheat under soil Water stress using modified growth functions," Agricultural Water Management, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wenlong & Gu, Xiaobo & Du, Yadan & Zheng, Xiaobo & Lu, Shiyu & Cheng, Zhikai & Cai, Wenjing & Chang, Tian, 2023. "Optimizing nitrogen, phosphorus, and potassium fertilization regimes to improve maize productivity under double ridge-furrow planting with full film mulching," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Wu, Lihong & Quan, Hao & Wu, Lina & Zhang, Xi & Feng, Hao & Ding, Dianyuan & Siddique, Kadambot H.M., 2023. "Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Zhou, Shiwei & Ye, Fan & Xia, Dufei & Liu, Zijin & Wu, Yangzhong & Chen, Fu, 2023. "Climate change impacts assessment and developing adaptation strategies for rainfed foxtail millet in northern Shanxi, China," Agricultural Water Management, Elsevier, vol. 290(C).
    4. Zhang, Yan & Qiang, Shengcai & Zhang, Guangxin & Sun, Min & Wen, Xiaoxia & Liao, Yuncheng & Gao, Zhiqiang, 2023. "Effects of ridge–furrow supplementary irrigation on water use efficiency and grain yield of winter wheat in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 289(C).
    5. He, Pingru & Yu, Shuang’en & Ding, Jihui & Ma, Tao & Li, Jin’gang & Dai, Yan & Chen, Kaiwen & Peng, Suhan & Zeng, Guangquan & Guo, Shuaishuai, 2024. "Multi-objective optimization of farmland water level and nitrogen fertilization management for winter wheat cultivation under waterlogging conditions based on TOPSIS-Entropy," Agricultural Water Management, Elsevier, vol. 297(C).
    6. Liu, Junming & Si, Zhuanyun & Wu, Lifeng & Fu, Yuanyuan & Zhang, Yingying & Kpalari, Djifa Fidele & Wu, Xiaolei & Cao, Hui & Gao, Yang & Duan, Aiwang, 2024. "Application of resource-environmental-economic perspective for optimal water and nitrogen rate under high-low seedbed cultivation in winter wheat," Agricultural Water Management, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Junsheng & Hu, Tiantian & Geng, Chenming & Cui, Xiaolu & Fan, Junliang & Zhang, Fucang, 2021. "Response of yield, yield components and water-nitrogen use efficiency of winter wheat to different drip fertigation regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Yamini, Vaddula & Singh, Kulvir, 2024. "Emitter spacing, depth of lateral placement, and nutrient levels affect productivity of cotton-wheat cropping system under sub-surface drip fertigation," Agricultural Water Management, Elsevier, vol. 295(C).
    3. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of ridge–furrow ratio and urea type on grain yield and water productivity of rainfed winter wheat on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Moradi, Layegh & Siosemardeh, Adel & Sohrabi, Yousef & Bahramnejad, Bahman & Hosseinpanahi, Farzad, 2022. "Dry matter remobilization and associated traits, grain yield stability, N utilization, and grain protein concentration in wheat cultivars under supplemental irrigation," Agricultural Water Management, Elsevier, vol. 263(C).
    5. Liu, Junming & Si, Zhuanyun & Wu, Lifeng & Shen, Xiaojun & Gao, Yang & Duan, Aiwang, 2023. "High-low seedbed cultivation drives the efficient utilization of key production resources and the improvement of wheat productivity in the North China Plain," Agricultural Water Management, Elsevier, vol. 285(C).
    6. Fang, Heng & Liu, Fulai & Gu, Xiaobo & Chen, Pengpeng & Li, Yupeng & Li, Yuannong, 2022. "The effect of source–sink on yield and water use of winter wheat under ridge-furrow with film mulching and nitrogen fertilization," Agricultural Water Management, Elsevier, vol. 267(C).
    7. Guo, Ru & Qian, Rui & Du, Luning & Sun, Weili & Wang, Jinjin & Cai, Tie & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong & Chen, Xiaoli, 2024. "Straw-derived biochar optimizes water consumption, shoot and root characteristics to improve water productivity of maize under reduced nitrogen," Agricultural Water Management, Elsevier, vol. 294(C).
    8. Wan, Wenliang & Zhao, Yanhui & Wang, Zijian & Li, Liulong & Jing, Jianguo & Lv, Zhaoyan & Diao, Ming & Li, Weihua & Jiang, Guiying & Wang, Xiao & Jiang, Dong, 2022. "Mitigation fluctuations of inter-row water use efficiency of spring wheat via narrowing row space in enlarged lateral space drip irrigation systems," Agricultural Water Management, Elsevier, vol. 274(C).
    9. Zhaoyang Li & Rui Zong & Tianyu Wang & Zhenhua Wang & Jinzhu Zhang, 2021. "Adapting Root Distribution and Improving Water Use Efficiency via Drip Irrigation in a Jujube ( Zizyphus jujube Mill.) Orchard after Long-Term Flood Irrigation," Agriculture, MDPI, vol. 11(12), pages 1-16, November.
    10. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    11. Wang, Xiao-Ling & Duan, Pei-Ling & Yang, Shen-Jiao & Liu, Yu-Hua & Qi, Lin & Shi, Jiang & Li, Xue-Lin & Song, Peng & Zhang, Li-Xia, 2020. "Corn compensatory growth upon post-drought rewatering based on the effects of rhizosphere soil nitrification on cytokinin," Agricultural Water Management, Elsevier, vol. 241(C).
    12. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
    13. Wu, Lihong & Quan, Hao & Wu, Lina & Zhang, Xi & Feng, Hao & Ding, Dianyuan & Siddique, Kadambot H.M., 2023. "Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Lijun Yin & Yaxin Liao & Xiao Mou, 2024. "Delayed Sowing Can Improve Potassium Utilization Efficiency and Grain Potassium Concentration in Winter Wheat," Agriculture, MDPI, vol. 14(5), pages 1-16, April.
    15. Valentina Spanic & Goran Jukic & Marina Zoric & Ivan Varnica, 2023. "Some Agronomic Properties of Winter Wheat Genotypes Grown at Different Locations in Croatia," Agriculture, MDPI, vol. 14(1), pages 1-15, December.
    16. Lu, Junsheng & Geng, Chenming & Cui, Xiaolu & Li, Mengyue & Chen, Shuaihong & Hu, Tiantian, 2021. "Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts," Agricultural Water Management, Elsevier, vol. 258(C).
    17. Zhang, Guangxin & Dai, Rongcheng & Ma, Wenzhuo & Fan, Hengzhi & Meng, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Optimizing the ridge–furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China," Agricultural Water Management, Elsevier, vol. 262(C).
    18. Liu, Xiaoli & Wang, Yandong & Zhang, Yuehe & Ren, Xiaolong & Chen, Xiaoli, 2022. "Can rainwater harvesting replace conventional irrigation for winter wheat production in dry semi-humid areas in China?," Agricultural Water Management, Elsevier, vol. 272(C).
    19. Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Mo, Yan & Zhang, Baozhong, 2021. "Straw mulching improves soil water content, increases flag leaf photosynthetic parameters and maintaines the yield of winter wheat with different irrigation amounts," Agricultural Water Management, Elsevier, vol. 249(C).
    20. Li, Haoru & Li, Xiaoli & Mei, Xurong & Nangia, Vinay & Guo, Rui & Hao, Weiping & Wang, Jiandong, 2023. "An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study," Agricultural Water Management, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.