Estimation of Greenhouse Tomato Foliage Temperature Using DNN and ML Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- King, B.A. & Shellie, K.C., 2016. "Evaluation of neural network modeling to predict non-water-stressed leaf temperature in wine grape for calculation of crop water stress index," Agricultural Water Management, Elsevier, vol. 167(C), pages 38-52.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jihun Kim & Il Do Ha & Sookhee Kwon & Ikhoon Jang & Myung Hwan Na, 2023. "A Smart Farm DNN Survival Model Considering Tomato Farm Effect," Agriculture, MDPI, vol. 13(9), pages 1-14, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Levin, Alexander D., 2019. "Re-evaluating pressure chamber methods of water status determination in field-grown grapevine (Vitis spp.)," Agricultural Water Management, Elsevier, vol. 221(C), pages 422-429.
- Kumar, Navsal & Adeloye, Adebayo J. & Shankar, Vijay & Rustum, Rabee, 2020. "Neural computing modelling of the crop water stress index," Agricultural Water Management, Elsevier, vol. 239(C).
- Krista C. Shellie & Bradley A. King, 2020. "Application of a Daily Crop Water Stress Index to Deficit Irrigate Malbec Grapevine under Semi-Arid Conditions," Agriculture, MDPI, vol. 10(11), pages 1-17, October.
- Melo, Leonardo Leite de & Melo, Verônica Gaspar Martins Leite de & Marques, Patrícia Angélica Alves & Frizzone, Jose Antônio & Coelho, Rubens Duarte & Romero, Roseli Aparecida Francelin & Barros, Timó, 2022. "Deep learning for identification of water deficits in sugarcane based on thermal images," Agricultural Water Management, Elsevier, vol. 272(C).
- Ramírez-Cuesta, J.M. & Ortuño, M.F. & Gonzalez-Dugo, V. & Zarco-Tejada, P.J. & Parra, M. & Rubio-Asensio, J.S. & Intrigliolo, D.S., 2022. "Assessment of peach trees water status and leaf gas exchange using on-the-ground versus airborne-based thermal imagery," Agricultural Water Management, Elsevier, vol. 267(C).
- King, B.A. & Tarkalson, D.D. & Sharma, V. & Bjorneberg, D.L., 2021. "Thermal Crop Water Stress Index Base Line Temperatures for Sugarbeet in Arid Western U.S," Agricultural Water Management, Elsevier, vol. 243(C).
More about this item
Keywords
leaf temperature; remote sensing; deep-learning; machine learning; greenhouse;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:1034-:d:863842. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.