IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i4p491-d784315.html
   My bibliography  Save this article

Effects of Kaolin and Shading Net on the Ecophysiology and Berry Composition of Sauvignon Blanc Grapevines

Author

Listed:
  • Eleonora Cataldo

    (Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, 50019 Florence, Italy)

  • Maddalena Fucile

    (Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, 50019 Florence, Italy)

  • Giovan Battista Mattii

    (Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, 50019 Florence, Italy)

Abstract

Rising temperatures in most viticultural regions are associated with a higher incidence of drastic weather circumstances such as heatwaves. The consequences are reflected in qualitative and quantitative white grapes characteristics. In fact, there is an enhancement in alcohol content and a jeopardized reduction in the aromatic potential. We performed a scientific test to assuage the bump of heatwaves and exposure of grapes on Vitis vinifera cv. “Sauvignon Blanc” with exposed vines (untreated) or with kaolin foliar treatment or with partial fruit-zone shading (shading net 30 and 70%). This work aimed to evaluate the effects of shading net (SD-30% and SD-70%) and foliar kaolin (K) treatment on physiology, technological maturity, and thiolic precursors in Italy during the 2020–2021 seasons. For this purpose, four treatments were established: SD-30% (green artificial shading net at 30%), SD-70% (green artificial shading net at 70%), K (foliar kaolin), and CTRL (no application). During the two vintages, single-leaf gas exchange appraisal, leaf temperature, berry temperature, chlorophyll fluorescence, pre-dawn, and leaf water potential were measured. Moreover, berry weight, pH, °Brix, acidity (technological maturity specifications), and the following thiolic precursors were analyzed: 3-S-glutathionylhexan-1-ol (Glut-3MH), S-4-(4-methylpentan-2-one)-L-cysteine (Cys-4MMP), and 3-S-cysteinylhexan-1-ol (Cys-3MH). SD-70% and K denoted less negative water potential, a lower berry temperature, and a higher level of all precursors than the other treatments. Acidity and sugar parameters indicated significant differences among treatments. The lower berry weight and the lower tartaric acidity were found in the CTRL treatment. In comparison, SD-70% and K showed lower and more balanced sugar contents. As a result of global warming, color shading net and kaolin have been demonstrated to be good practices to counterpoise the divergence between aromatic and technological maturity in Sauvignon Blanc grapevines.

Suggested Citation

  • Eleonora Cataldo & Maddalena Fucile & Giovan Battista Mattii, 2022. "Effects of Kaolin and Shading Net on the Ecophysiology and Berry Composition of Sauvignon Blanc Grapevines," Agriculture, MDPI, vol. 12(4), pages 1-21, March.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:491-:d:784315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/4/491/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/4/491/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Ammoniaci & Simon-Paolo Kartsiotis & Rita Perria & Paolo Storchi, 2021. "State of the Art of Monitoring Technologies and Data Processing for Precision Viticulture," Agriculture, MDPI, vol. 11(3), pages 1-20, February.
    2. Yadu Pokhrel & Farshid Felfelani & Yusuke Satoh & Julien Boulange & Peter Burek & Anne Gädeke & Dieter Gerten & Simon N. Gosling & Manolis Grillakis & Lukas Gudmundsson & Naota Hanasaki & Hyungjun Kim, 2021. "Global terrestrial water storage and drought severity under climate change," Nature Climate Change, Nature, vol. 11(3), pages 226-233, March.
    3. Aickin, M. & Gensler, H., 1996. "Adjusting for multiple testing when reporting research results: The Bonferroni vs Holm methods," American Journal of Public Health, American Public Health Association, vol. 86(5), pages 726-728.
    4. Levin, Alexander D., 2019. "Re-evaluating pressure chamber methods of water status determination in field-grown grapevine (Vitis spp.)," Agricultural Water Management, Elsevier, vol. 221(C), pages 422-429.
    5. Lopez, G. & Boini, A. & Manfrini, L. & Torres-Ruiz, J.M. & Pierpaoli, E. & Zibordi, M. & Losciale, P. & Morandi, B. & Corelli-Grappadelli, L., 2018. "Effect of shading and water stress on light interception, physiology and yield of apple trees," Agricultural Water Management, Elsevier, vol. 210(C), pages 140-148.
    6. Nishanthi Kariyapperuma & Eva Collins, 2021. "Family logics and environmental sustainability: A study of the New Zealand wine industry," Business Strategy and the Environment, Wiley Blackwell, vol. 30(8), pages 3626-3650, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyojung Tak & Gregory Ruhnke & Ya-Chen Shih, 2015. "The Association between Patient-Centered Attributes of Care and Patient Satisfaction," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 8(2), pages 187-197, April.
    2. Marzia Ciampittiello & Aldo Marchetto & Angela Boggero, 2024. "Water Resources Management under Climate Change: A Review," Sustainability, MDPI, vol. 16(9), pages 1-14, April.
    3. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    4. Hein, Ilka & Cecil, Julia & Lermer, Eva, 2024. "Acceptance and motivational effect of AI-driven feedback in the workplace: An experimental study with direct replication," OSF Preprints uczaw_v1, Center for Open Science.
    5. Van de Velde, Liesbeth & Verbeke, Wim & Popp, Michael & Van Huylenbroeck, Guido, 2010. "The importance of message framing for providing information about sustainability and environmental aspects of energy," Energy Policy, Elsevier, vol. 38(10), pages 5541-5549, October.
    6. Mahamed G. H. Omran & Maurice Clerc & Fatme Ghaddar & Ahmad Aldabagh & Omar Tawfik, 2022. "Permutation Tests for Metaheuristic Algorithms," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    7. Petruzzellis, Francesco & Natale, Sara & Bariviera, Luca & Calderan, Alberto & Mihelčič, Alenka & Reščič, Jan & Sivilotti, Paolo & Šuklje, Katja & Lisjak, Klemen & Vanzo, Andreja & Nardini, Andrea, 2022. "High spatial heterogeneity of water stress levels in Refošk grapevines cultivated in Classical Karst," Agricultural Water Management, Elsevier, vol. 260(C).
    8. Laura Broccardo & Elisa Truant & Lèo‐Paul Dana, 2023. "The sustainability orientation in the wine industry: An analysis based on age as a driver," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(3), pages 1300-1313, May.
    9. Schmitt, Rafael Jan Pablo & Rosa, Lorenzo, 2024. "Dams for hydropower and irrigation: Trends, challenges, and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. José‐Luis Pinto‐Prades & José‐María Abellán‐Perpiñán, 2005. "Measuring the health of populations: the veil of ignorance approach," Health Economics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-82, January.
    11. Sandra N. Fredes & Luis Á. Ruiz & Jorge A. Recio, 2021. "Modeling °Brix and pH in Wine Grapes from Satellite Images in Colchagua Valley, Chile," Agriculture, MDPI, vol. 11(8), pages 1-18, July.
    12. Yuetong Chen & Hao Wang & Baolong Zhang & Wei Zhang, 2022. "A method of measuring the article discriminative capacity and its distribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3317-3341, June.
    13. Dorijan Radočaj & Ivan Plaščak & Mladen Jurišić, 2023. "Global Navigation Satellite Systems as State-of-the-Art Solutions in Precision Agriculture: A Review of Studies Indexed in the Web of Science," Agriculture, MDPI, vol. 13(7), pages 1-17, July.
    14. Peyman Arjomandi A. & Masoud Yazdanpanah & Akbar Shirzad & Nadejda Komendantova & Erfan Kameli & Mahdi Hosseinzadeh & Erfan Razavi, 2023. "Institutional Trust and Cognitive Motivation toward Water Conservation in the Face of an Environmental Disaster," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    15. Tan, Lili & Feng, Puyu & Li, Baoguo & Huang, Feng & Liu, De Li & Ren, Pinpin & Liu, Haipeng & Srinivasan, Raghavan & Chen, Yong, 2022. "Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    16. David N. Sattler & James M. Graham & Albert Whippy & Richard Atienza & James Johnson, 2023. "Developing a Climate Change Risk Perception Model in the Philippines and Fiji: Posttraumatic Growth Plays Central Role," IJERPH, MDPI, vol. 20(2), pages 1-16, January.
    17. Rozgonjuk, Dmitri & Schmitz, Florian & Kannen, Christopher & Montag, Christian, 2021. "Cognitive ability and personality: Testing broad to nuanced associations with a smartphone app," Intelligence, Elsevier, vol. 88(C).
    18. Sofia Brunelli & Salvatore Sciascia & Massimo Baù, 2024. "Nonfinancial reporting in family firms: A systematic review and agenda for future research," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 162-179, February.
    19. Carl Berning & Bernd Weiß, 2016. "Publication bias in the German social sciences: an application of the caliper test to three top-tier German social science journals," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 901-917, March.
    20. Amjad Khan & Yoonkyung Park & Jongpyo Park & Reeho Kim, 2022. "Assessment of Rainwater Harvesting Facilities Tank Size Based on a Daily Water Balance Model: The Case of Korea," Sustainability, MDPI, vol. 14(23), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:491-:d:784315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.