IDEAS home Printed from https://ideas.repec.org/a/exl/1trans/v15y2020i3p17-28.html
   My bibliography  Save this article

Power Flows In A Hydrostatic-Mechanical Transmission Of A Mining Locomotive During The Braking Process

Author

Listed:
  • Vadym SAMORODOV

    (National Technical University "Kharkiv Polytechnic Institute", Kyrpychova st., 2, Kharkiv, 61002, Ukraine)

  • Anatoliy BONDARENKO

    (National Technical University "Kharkiv Polytechnic Institute", Kyrpychova st., 2, Kharkiv, 61002, Ukraine)

  • Igor TARAN

    (Dnipro University of Technology, D. Yavornytsky av., 19, Dnipro, 49005, Ukraine)

  • Iryna KLYMENKO

    (Dnipro University of Technology, D. Yavornytsky av., 19, Dnipro, 49005, Ukraine)

Abstract

This paper considers the braking process of a mine diesel locomotive with hydrostatic mechanical transmission (HSMT) operating according to the...

Suggested Citation

  • Vadym SAMORODOV & Anatoliy BONDARENKO & Igor TARAN & Iryna KLYMENKO, 2020. "Power Flows In A Hydrostatic-Mechanical Transmission Of A Mining Locomotive During The Braking Process," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 15(3), pages 17-28, September.
  • Handle: RePEc:exl:1trans:v:15:y:2020:i:3:p:17-28
    DOI: 10.21307/tp-2020-030
    as

    Download full text from publisher

    File URL: https://www.exeley.com/exeley/journals/transport_problems/15/3/pdf/10.21307_tp-2020-030.pdf
    Download Restriction: no

    File URL: https://www.exeley.com/transport_problems/doi/10.21307/tp-2020-030
    Download Restriction: no

    File URL: https://libkey.io/10.21307/tp-2020-030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaojun Liu & Dongye Sun & Datong Qin & Junlong Liu, 2017. "Achievement of Fuel Savings in Wheel Loader by Applying Hydrodynamic Mechanical Power Split Transmissions," Energies, MDPI, vol. 10(9), pages 1-20, August.
    2. Mohammad Ali Karbaschian & Dirk Söffker, 2014. "Review and Comparison of Power Management Approaches for Hybrid Vehicles with Focus on Hydraulic Drives," Energies, MDPI, vol. 7(6), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Wang, Jixin & Liu, Yong & Gao, Guangzong & Liang, Siwen & Ma, Hongfeng, 2020. "Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery," Applied Energy, Elsevier, vol. 275(C).
    2. Ximing Wang & Hongwen He & Fengchun Sun & Jieli Zhang, 2015. "Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles," Energies, MDPI, vol. 8(4), pages 1-20, April.
    3. Hanho Son & Hyunsoo Kim, 2016. "Development of Near Optimal Rule-Based Control for Plug-In Hybrid Electric Vehicles Taking into Account Drivetrain Component Losses," Energies, MDPI, vol. 9(6), pages 1-18, May.
    4. Bedatri Moulik & Dirk Söffker, 2015. "Optimal Rule-Based Power Management for Online, Real-Time Applications in HEVs with Multiple Sources and Objectives: A Review," Energies, MDPI, vol. 8(9), pages 1-15, August.
    5. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    6. Bedatri Moulik & Dirk Söffker, 2016. "Online Power Management with Embedded Offline-Optimized Parameters for a Three-Source Hybrid Powertrain with an Experimental Emulation Application," Energies, MDPI, vol. 9(6), pages 1-33, June.
    7. L. Viktor Larsson & Liselott Ericson & Karl Uebel & Petter Krus, 2019. "Low-Level Control of Hybrid Hydromechanical Transmissions for Heavy Mobile Working Machines," Energies, MDPI, vol. 12(9), pages 1-20, May.
    8. Hanho Son & Kyusik Park & Sungho Hwang & Hyunsoo Kim, 2017. "Design Methodology of a Power Split Type Plug-In Hybrid Electric Vehicle Considering Drivetrain Losses," Energies, MDPI, vol. 10(4), pages 1-18, March.
    9. Branimir Škugor & Joško Petrić, 2018. "Optimization of Control Variables and Design of Management Strategy for Hybrid Hydraulic Vehicle," Energies, MDPI, vol. 11(10), pages 1-24, October.
    10. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Shaoping Xiong & Gabriel Wilfong & John Lumkes, 2019. "Components Sizing and Performance Analysis of Hydro-Mechanical Power Split Transmission Applied to a Wheel Loader," Energies, MDPI, vol. 12(9), pages 1-19, April.
    12. Huang, Yanjun & Khajepour, Amir & Wang, Hong, 2016. "A predictive power management controller for service vehicle anti-idling systems without a priori information," Applied Energy, Elsevier, vol. 182(C), pages 548-557.
    13. Baogang Li & Dongye Sun & Minghui Hu & Junlong Liu, 2018. "Research on Economic Comprehensive Control Strategies of Tractor-Planter Combinations in Planting, Including Gear-Shift and Cruise Control," Energies, MDPI, vol. 11(3), pages 1-21, March.
    14. Chen, Zeyu & Xiong, Rui & Cao, Jiayi, 2016. "Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions," Energy, Elsevier, vol. 96(C), pages 197-208.
    15. Diming Lou & Yinghua Zhao & Liang Fang & Yuanzhi Tang & Caihua Zhuang, 2022. "Encoder–Decoder-Based Velocity Prediction Modelling for Passenger Vehicles Coupled with Driving Pattern Recognition," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
    16. Johannes Schalk & Harald Aschemann, 2016. "A Causal and Real-Time Capable Power Management Algorithm for Off-Highway Hybrid Propulsion Systems," Energies, MDPI, vol. 10(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:exl:1trans:v:15:y:2020:i:3:p:17-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MPS Ltd. (email available below). General contact details of provider: https://www.exeley.com/journal/transport_problems .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.