IDEAS home Printed from https://ideas.repec.org/a/eur/ejedjr/114.html
   My bibliography  Save this article

Experiences of Juvenile Offender Learners in Teaching and Learning Support in the Correctional Schools: A Wellness Perspective

Author

Listed:
  • Manzini Theresa Lydia Badiktsie

    (University of South Africa)

Abstract

The study explores selected South African correctional school Juvenile offender learners' experiences regarding the support received for improving teaching and learning and wellness. The study uses qualitative interpretive approach; open-ended questionnaire involving 21 juvenile offender learners was utilized to collect data. The theoretical framework applied in the study is Ubuntu and Wellness. Ethical measures were considered before and during the study. Findings revealed that teachers use various forms of teaching and learning in order to support juvenile offender learners in the correctional schools. In addition, security official, teachers, and peers collaborate with various stakeholders to improve the wellness juvenile offender learners. The teaching and learning support meet the needs of intellectual, social, physical, emotional, spiritual and career/ occupational of juvenile offender learners. It also addresses barriers to learning, create favourable learning environment, enhance their wellness and improve their academic performances .

Suggested Citation

  • Manzini Theresa Lydia Badiktsie, 2023. "Experiences of Juvenile Offender Learners in Teaching and Learning Support in the Correctional Schools: A Wellness Perspective," European Journal of Education Articles, Revistia Research and Publishing, vol. 6, January -.
  • Handle: RePEc:eur:ejedjr:114
    DOI: 10.26417/766pkm35
    as

    Download full text from publisher

    File URL: https://revistia.com/index.php/ejed/article/view/709
    Download Restriction: no

    File URL: https://revistia.com/files/articles/ejed_v6_i1_23/Badiktsie.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26417/766pkm35?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. George Cobb, 2015. "Mere Renovation is Too Little Too Late: We Need to Rethink our Undergraduate Curriculum from the Ground Up," The American Statistician, Taylor & Francis Journals, vol. 69(4), pages 266-282, November.
    2. Stephanie C. Hicks & Rafael A. Irizarry, 2018. "A Guide to Teaching Data Science," The American Statistician, Taylor & Francis Journals, vol. 72(4), pages 382-391, October.
    3. Qi Liu & Gengzhong Feng & Nengmin Wang & Giri Kumar Tayi, 2018. "A multi-objective model for discovering high-quality knowledge based on data quality and prior knowledge," Information Systems Frontiers, Springer, vol. 20(2), pages 401-416, April.
    4. Thierry Fabiani & Marcos Lima, 2014. "Teaching with cases, a framework based approach," Post-Print hal-01045121, HAL.
    5. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    6. Qi Liu & Gengzhong Feng & Nengmin Wang & Giri Kumar Tayi, 0. "A multi-objective model for discovering high-quality knowledge based on data quality and prior knowledge," Information Systems Frontiers, Springer, vol. 0, pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Liu & Gengzhong Feng & Giri Kumar Tayi & Jun Tian, 2021. "Managing Data Quality of the Data Warehouse: A Chance-Constrained Programming Approach," Information Systems Frontiers, Springer, vol. 23(2), pages 375-389, April.
    2. Yalcin, Ahmet Selcuk & Kilic, Huseyin Selcuk & Delen, Dursun, 2022. "The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    3. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    4. Zijuan Zhao & Kai Yang & Jinli Guo, 2024. "Heterogeneous hypergraph representation learning for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-9, October.
    5. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    6. Peng Liu & Liang Gui & Huirong Wang & Muhammad Riaz, 2022. "A Two-Stage Deep-Learning Model for Link Prediction Based on Network Structure and Node Attributes," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    7. Babak Daneshvar Rouyendegh & Kazim Topuz & Ali Dag & Asil Oztekin, 2019. "An AHP-IFT Integrated Model for Performance Evaluation of E-Commerce Web Sites," Information Systems Frontiers, Springer, vol. 21(6), pages 1345-1355, December.
    8. Jiaping Cao & Tianyang Lei & Jichao Li & Jiang Jiang, 2023. "A Novel Link Prediction Method for Social Multiplex Networks Based on Deep Learning," Mathematics, MDPI, vol. 11(7), pages 1-19, April.
    9. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    10. Yuliansyah, Herman & Othman, Zulaiha Ali & Bakar, Azuraliza Abu, 2023. "A new link prediction method to alleviate the cold-start problem based on extending common neighbor and degree centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    11. Chengdong Zhang & Keke Li & Shaoqing Wang & Bin Zhou & Lei Wang & Fuzhen Sun, 2023. "Learning Heterogeneous Graph Embedding with Metapath-Based Aggregation for Link Prediction," Mathematics, MDPI, vol. 11(3), pages 1-18, January.
    12. Charikhi, Mourad, 2024. "Association of the PageRank algorithm with similarity-based methods for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    13. Daniel Kaplan, 2018. "Teaching Stats for Data Science," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 89-96, January.
    14. Wang, Feifei & Dong, Jiaxin & Lu, Wanzhao & Xu, Shuo, 2023. "Collaboration prediction based on multilayer all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 17(1).
    15. Zhao, Zhili & Wu, Simin & Luo, Ge & Zhang, Nana & Hu, Ahui & Liu, Jun, 2024. "Mining odd-length paths for link prediction in bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
    16. Amy L. Phelps & Kathryn A. Szabat, 2017. "The Current Landscape of Teaching Analytics to Business Students at Institutions of Higher Education: Who is Teaching What?," The American Statistician, Taylor & Francis Journals, vol. 71(2), pages 155-161, April.
    17. Lu, Jizhou & Feng, Gengzhong & Shum, Stephen & Lai, Kin Keung, 2021. "On the value of information sharing in the presence of information errors," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1139-1152.
    18. Mafakheri, Aso & Sulaimany, Sadegh & Mohammadi, Sara, 2023. "Predicting the establishment and removal of global trade relations for import and export of petrochemical products," Energy, Elsevier, vol. 269(C).
    19. Mishra, Shivansh & Singh, Shashank Sheshar & Kumar, Ajay & Biswas, Bhaskar, 2022. "ELP: Link prediction in social networks based on ego network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    20. Xing Li & Qingsong Li & Wei Wei & Zhiming Zheng, 2022. "Convolution Based Graph Representation Learning from the Perspective of High Order Node Similarities," Mathematics, MDPI, vol. 10(23), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eur:ejedjr:114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Revistia Research and Publishing (email available below). General contact details of provider: https://revistia.com/index.php/ejed .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.