IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v72y2018i4p382-391.html
   My bibliography  Save this article

A Guide to Teaching Data Science

Author

Listed:
  • Stephanie C. Hicks
  • Rafael A. Irizarry

Abstract

Demand for data science education is surging and traditional courses offered by statistics departments are not meeting the needs of those seeking training. This has led to a number of opinion pieces advocating for an update to the Statistics curriculum. The unifying recommendation is that computing should play a more prominent role. We strongly agree with this recommendation, but advocate the main priority is to bring applications to the forefront as proposed by Nolan and Speed in 1999. We also argue that the individuals tasked with developing data science courses should not only have statistical training, but also have experience analyzing data with the main objective of solving real-world problems. Here, we share a set of general principles and offer a detailed guide derived from our successful experience developing and teaching a graduate-level, introductory data science course centered entirely on case studies. We argue for the importance of statistical thinking, as defined by Wild and Pfannkuch in 1999 and describe how our approach teaches students three key skills needed to succeed in data science, which we refer to as creating, connecting, and computing. This guide can also be used for statisticians wanting to gain more practical knowledge about data science before embarking on teaching an introductory course. Supplementary materials for this article are available online.

Suggested Citation

  • Stephanie C. Hicks & Rafael A. Irizarry, 2018. "A Guide to Teaching Data Science," The American Statistician, Taylor & Francis Journals, vol. 72(4), pages 382-391, October.
  • Handle: RePEc:taf:amstat:v:72:y:2018:i:4:p:382-391
    DOI: 10.1080/00031305.2017.1356747
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2017.1356747
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2017.1356747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giani Ionel Gradinaru & Vasile Dinu & Catalin-Laurentiu Rotaru & Andreea Toma, 2024. "The Development of Educational Competences for Romanian Students in the Context of the Evolution of Data Science and Artificial Intelligence," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 26(65), pages 1-14, February.
    2. Manuela Svoboda, 2022. "Evaluation of Motivation, Expectation, and Present Situation in 3rd Year Undergraduate Students of German Language and Literature at the University of Rijeka, Croatia," European Journal of Education Articles, Revistia Research and Publishing, vol. 5, ejed_v5_i.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:72:y:2018:i:4:p:382-391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.