IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v616y2023ics0378437123001012.html
   My bibliography  Save this article

A new link prediction method to alleviate the cold-start problem based on extending common neighbor and degree centrality

Author

Listed:
  • Yuliansyah, Herman
  • Othman, Zulaiha Ali
  • Bakar, Azuraliza Abu

Abstract

The cold-start problem occurs when a new user with limited information joins the network, and it becomes challenging to predict new links in future networks. Several studies have proposed link prediction methods based on common neighbors by exploring topology information using the Triadic Closure concept. However, the common neighbor failed to predict future relations because the new user with cold-start problems was isolated and had no common neighbors. This study proposes a common neighbor enhanced by the proposed gravity of node pairs inspired by Newton’s law of gravity called Degree of Gravity for Link Prediction (DGLP). The DGLP considers degree centrality, common neighbors, and distance between candidate node pairs generated by topological information in a single-layer network. The proposed DGLP was evaluated using sixteen datasets and nine benchmark methods. The evaluation results showed that DGLP could increase Area Under the Curve (AUC) values by 7.15%, and the average AUC value reached 0.819 for experiments with 10-fold cross-validation. In addition, the calculated ratio of successfully predicted and node pairs with the cold-start problem achieved 99.94%. The prediction ratio is calculated to ensure that DGLP alleviates the cold-start problem and outperforms benchmark methods.

Suggested Citation

  • Yuliansyah, Herman & Othman, Zulaiha Ali & Bakar, Azuraliza Abu, 2023. "A new link prediction method to alleviate the cold-start problem based on extending common neighbor and degree centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
  • Handle: RePEc:eee:phsmap:v:616:y:2023:i:c:s0378437123001012
    DOI: 10.1016/j.physa.2023.128546
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123001012
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Shun-yao & Zhang, Qi & Xue, Chuan-yu & Liao, Xi-yang, 2019. "Cold-start link prediction in multi-relational networks based on network dependence analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 558-565.
    2. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    3. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    4. Tang, Minghu & Wang, Wenjun, 2022. "Cold-start link prediction integrating community information via multi-nonnegative matrix factorization," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Aziz, Furqan & Gul, Haji & Muhammad, Ishtiaq & Uddin, Irfan, 2020. "Link prediction using node information on local paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    6. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    7. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    8. Vala Ali Rohani & Zarinah Mohd Kasirun & Sameer Kumar & Shahaboddin Shamshirband, 2014. "An Effective Recommender Algorithm for Cold-Start Problem in Academic Social Networks," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-11, March.
    9. Mishra, Shivansh & Singh, Shashank Sheshar & Kumar, Ajay & Biswas, Bhaskar, 2022. "ELP: Link prediction in social networks based on ego network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shugang Li & He Zhu & Zhifang Wen & Jiayi Li & Yuning Zang & Jiayi Zhang & Ziqian Yan & Yanfang Wei, 2023. "Link Prediction Based on Heterogeneous Social Intimacy and Its Application in Social Influencer Integrated Marketing," Mathematics, MDPI, vol. 11(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    2. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    3. Zhou, Tao, 2023. "Discriminating abilities of threshold-free evaluation metrics in link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    4. Chunning Wang & Fengqin Tang & Xuejing Zhao, 2023. "LPGRI: A Global Relevance-Based Link Prediction Approach for Multiplex Networks," Mathematics, MDPI, vol. 11(14), pages 1-15, July.
    5. Tofighy, Sajjad & Charkari, Nasrollah Moghadam & Ghaderi, Foad, 2022. "Link prediction in multiplex networks using intralayer probabilistic distance and interlayer co-evolving factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    6. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    7. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    8. Chunjiang Liu & Yikun Han & Haiyun Xu & Shihan Yang & Kaidi Wang & Yongye Su, 2024. "A Community Detection and Graph-Neural-Network-Based Link Prediction Approach for Scientific Literature," Mathematics, MDPI, vol. 12(3), pages 1-20, January.
    9. Giorgos Stamatelatos & George Drosatos & Sotirios Gyftopoulos & Helen Briola & Pavlos S. Efraimidis, 2021. "Point-of-interest lists and their potential in recommendation systems," Information Technology & Tourism, Springer, vol. 23(2), pages 209-239, June.
    10. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.
    11. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    12. Yan Qi & Xin Zhang & Zhengyin Hu & Bin Xiang & Ran Zhang & Shu Fang, 2022. "Choosing the right collaboration partner for innovation: a framework based on topic analysis and link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5519-5550, September.
    13. Charikhi, Mourad, 2024. "Association of the PageRank algorithm with similarity-based methods for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    14. Wang, Feifei & Dong, Jiaxin & Lu, Wanzhao & Xu, Shuo, 2023. "Collaboration prediction based on multilayer all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 17(1).
    15. Bütün, Ertan & Kaya, Mehmet, 2019. "A pattern based supervised link prediction in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1136-1145.
    16. Joon Hyung Cho & Jungpyo Lee & So Young Sohn, 2021. "Predicting future technological convergence patterns based on machine learning using link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5413-5429, July.
    17. Douglas Castilho & Tharsis T. P. Souza & Soong Moon Kang & Jo~ao Gama & Andr'e C. P. L. F. de Carvalho, 2021. "Forecasting Financial Market Structure from Network Features using Machine Learning," Papers 2110.11751, arXiv.org.
    18. Zhen Liu & Jia-Lin He & Komal Kapoor & Jaideep Srivastava, 2013. "Correlations between Community Structure and Link Formation in Complex Networks," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.
    19. Xing Li & Qingsong Li & Wei Wei & Zhiming Zheng, 2022. "Convolution Based Graph Representation Learning from the Perspective of High Order Node Similarities," Mathematics, MDPI, vol. 10(23), pages 1-13, December.
    20. Najari, Shaghayegh & Salehi, Mostafa & Ranjbar, Vahid & Jalili, Mahdi, 2019. "Link prediction in multiplex networks based on interlayer similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:616:y:2023:i:c:s0378437123001012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.