IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxvy2022i3p607-619.html
   My bibliography  Save this article

The Impact of MT Strategies on Risk and Value Distribution of Unit-linked Insurance Portfolio

Author

Listed:
  • Magdalena Homa

Abstract

Purpose: The analysis conducted demonstrates that in the case of unit-linked insurance, unlike classic insurance, the composition of the reference portfolio gains much more significance than the insurance period. Design/Methodology/Approach: Hence, this type of insurance cannot be thought of only in the long term but, above all, the investment strategy should be adapted to market realities. Knowledge of the impact of the use of MT strategies on the parameters of the distribution of the portfolio value will enable the insured to control and possibly change the strategy of conduct during the insurance period by adjusting the composition of the portfolio to the market situation, and thus ensuring a payment tailored to their own needs. Findings: In Poland, in the case of unit-linked insurance, the financial risk is mainly borne by the insured who is responsible for any negative effects of their investment decisions. Therefore, changes in the actuarial value of a unit-linked insurance portfolio have been examined depending on the managers’ use of market-timing (MT) strategies. Practical Implications: Originality/Value:

Suggested Citation

  • Magdalena Homa, 2022. "The Impact of MT Strategies on Risk and Value Distribution of Unit-linked Insurance Portfolio," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 607-619.
  • Handle: RePEc:ers:journl:v:xxv:y:2022:i:3:p:607-619
    as

    Download full text from publisher

    File URL: https://ersj.eu/journal/3053/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dahl, Mikkel & Moller, Thomas, 2006. "Valuation and hedging of life insurance liabilities with systematic mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 193-217, October.
    2. Møller,Thomas & Steffensen,Mogens, 2007. "Market-Valuation Methods in Life and Pension Insurance," Cambridge Books, Cambridge University Press, number 9780521868778, January.
    3. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    4. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    5. Cira Perna & Marilena Sibillo (ed.), 2008. "Mathematical and Statistical Methods in Insurance and Finance," Springer Books, Springer, number 978-88-470-0704-8, April.
    6. Ballotta, Laura & Haberman, Steven, 2006. "The fair valuation problem of guaranteed annuity options: The stochastic mortality environment case," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 195-214, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fung, Man Chung & Ignatieva, Katja & Sherris, Michael, 2014. "Systematic mortality risk: An analysis of guaranteed lifetime withdrawal benefits in variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 103-115.
    2. Virginia R. Young, 2007. "Pricing Life Insurance under Stochastic Mortality via the Instantaneous Sharpe Ratio: Theorems and Proofs," Papers 0705.1297, arXiv.org.
    3. Homa Magdalena, 2020. "Mathematical Reserves vs Longevity Risk in Life Insurances," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(1), pages 23-38, March.
    4. Deelstra, Griselda & Grasselli, Martino & Van Weverberg, Christopher, 2016. "The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 205-219.
    5. Marcus C. Christiansen, 2013. "Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates," Risks, MDPI, vol. 1(3), pages 1-20, October.
    6. Levantesi, Susanna & Menzietti, Massimiliano, 2012. "Managing longevity and disability risks in life annuities with long term care," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 391-401.
    7. Eckhard Platen, 2009. "Real World Pricing of Long Term Contracts," Research Paper Series 262, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Cox, Samuel H. & Lin, Yijia & Pedersen, Hal, 2010. "Mortality risk modeling: Applications to insurance securitization," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 242-253, February.
    9. Buchardt, Kristian, 2014. "Dependent interest and transition rates in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 167-179.
    10. Young, Virginia R., 2008. "Pricing life insurance under stochastic mortality via the instantaneous Sharpe ratio," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 691-703, April.
    11. Marcos Escobar & Mikhail Krayzler & Franz Ramsauer & David Saunders & Rudi Zagst, 2016. "Incorporation of Stochastic Policyholder Behavior in Analytical Pricing of GMABs and GMDBs," Risks, MDPI, vol. 4(4), pages 1-36, November.
    12. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    13. Gao, Huan & Mamon, Rogemar & Liu, Xiaoming & Tenyakov, Anton, 2015. "Mortality modelling with regime-switching for the valuation of a guaranteed annuity option," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 108-120.
    14. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    15. Ting Wang & Virginia R. Young, 2010. "Hedging Pure Endowments with Mortality Derivatives," Papers 1011.0248, arXiv.org.
    16. Huang, Yu-Lieh & Tsai, Jeffrey Tzuhao & Yang, Sharon S. & Cheng, Hung-Wen, 2014. "Price bounds of mortality-linked security in incomplete insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 30-39.
    17. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    18. Qian, Linyi & Wang, Wei & Wang, Rongming & Tang, Yincai, 2010. "Valuation of equity-indexed annuity under stochastic mortality and interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 123-129, October.
    19. Ignatieva, Katja & Song, Andrew & Ziveyi, Jonathan, 2016. "Pricing and hedging of guaranteed minimum benefits under regime-switching and stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 286-300.
    20. Marco Di Francesco & Roberta Simonella, 2023. "A stochastic Asset Liability Management model for life insurance companies," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(1), pages 61-94, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxv:y:2022:i:3:p:607-619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.