IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v55y2014icp167-179.html
   My bibliography  Save this article

Dependent interest and transition rates in life insurance

Author

Listed:
  • Buchardt, Kristian

Abstract

For market consistent life insurance liabilities modelled with a multi-state Markov chain, it is of importance to consider the interest and transition rates as stochastic processes, for example in order to consider hedging possibilities of the risks, and for risk measurement. In the literature, this is usually done with an assumption of independence between the interest and transition rates. In this paper, it is shown how to valuate life insurance liabilities using affine processes for modelling dependent interest and transition rates. This approach leads to the introduction of so-called dependent forward rates. We propose a specific model for surrender modelling, and within this model the dependent forward rates are calculated, and the market value and the Solvency II capital requirement are examined for a simple savings contract.

Suggested Citation

  • Buchardt, Kristian, 2014. "Dependent interest and transition rates in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 167-179.
  • Handle: RePEc:eee:insuma:v:55:y:2014:i:c:p:167-179
    DOI: 10.1016/j.insmatheco.2014.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668714000080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2014.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ragnar Norberg, 1999. "A theory of bonus in life insurance," Finance and Stochastics, Springer, vol. 3(4), pages 373-390.
    2. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    3. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    4. Steffensen, Mogens, 2002. "Intervention options in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 71-85, August.
    5. Dahl, Mikkel & Moller, Thomas, 2006. "Valuation and hedging of life insurance liabilities with systematic mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 193-217, October.
    6. Møller,Thomas & Steffensen,Mogens, 2007. "Market-Valuation Methods in Life and Pension Insurance," Cambridge Books, Cambridge University Press, number 9780521868778, October.
    7. Norberg, Ragnar, 2010. "Forward mortality and other vital rates -- Are they the way forward?," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 105-112, October.
    8. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    9. Domenico De Giovanni, 2010. "Lapse rate modeling: a rational expectation approach," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2010(1), pages 56-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamaal Ahmad & Mogens Bladt, 2022. "Phase-type representations of stochastic interest rates with applications to life insurance," Papers 2207.11292, arXiv.org, revised Nov 2022.
    2. Mathias Valla & Xavier Milhaud & Anani Ayodélé Olympio, 2023. "Including individual Customer Lifetime Value and competing risks in tree-based lapse management strategies," Post-Print hal-03903047, HAL.
    3. Jiwook Jang & Siti Norafidah Mohd Ramli, 2018. "Hierarchical Markov Model in Life Insurance and Social Benefit Schemes," Risks, MDPI, vol. 6(3), pages 1-17, June.
    4. K. Buchardt & C. Furrer & M. Steffensen, 2018. "Forward transition rates," Papers 1811.00137, arXiv.org, revised Apr 2019.
    5. Jang, Jiwook & Mohd Ramli, Siti Norafidah, 2015. "Jump diffusion transition intensities in life insurance and disability annuity," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 440-451.
    6. Berdin, Elia & Gründl, Helmut & Kubitza, Christian, 2017. "Rising interest rates, lapse risk, and the stability of life insurers," ICIR Working Paper Series 29/17, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
    7. Marcus Christiansen & Andreas Niemeyer, 2015. "On the forward rate concept in multi-state life insurance," Finance and Stochastics, Springer, vol. 19(2), pages 295-327, April.
    8. Xavier Milhaud & Christophe Dutang, 2018. "Lapse tables for lapse risk management in insurance: a competing risk approach," Post-Print hal-01727669, HAL.
    9. Kristian Buchardt & Christian Furrer & Mogens Steffensen, 2019. "Forward transition rates," Finance and Stochastics, Springer, vol. 23(4), pages 975-999, October.
    10. Xavier Milhaud & Christophe Dutang, 2018. "Lapse tables for lapse risk management in insurance: a competing risk approach," Post-Print hal-01985256, HAL.
    11. Mathias Valla & Xavier Milhaud & Anani Ayodélé Olympio, 2023. "Including individual Customer Lifetime Value and competing risks in tree-based lapse management strategy," Working Papers hal-03903047, HAL.
    12. Kristian Buchardt & Thomas Møller, 2015. "Life Insurance Cash Flows with Policyholder Behavior," Risks, MDPI, vol. 3(3), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristian Buchardt & Christian Furrer & Mogens Steffensen, 2019. "Forward transition rates," Finance and Stochastics, Springer, vol. 23(4), pages 975-999, October.
    2. Deelstra, Griselda & Grasselli, Martino & Van Weverberg, Christopher, 2016. "The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 205-219.
    3. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    4. Ting Wang & Virginia R. Young, 2010. "Hedging Pure Endowments with Mortality Derivatives," Papers 1011.0248, arXiv.org.
    5. Debbie Kusch Falden & Anna Kamille Nyegaard, 2021. "Retrospective Reserves and Bonus with Policyholder Behavior," Risks, MDPI, vol. 9(1), pages 1-28, January.
    6. Djehiche, Boualem & Löfdahl, Björn, 2014. "Risk aggregation and stochastic claims reserving in disability insurance," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 100-108.
    7. Francesca Biagini & Andreas Groll & Jan Widenmann, 2016. "Risk Minimization for Insurance Products via F-Doubly Stochastic Markov Chains," Risks, MDPI, vol. 4(3), pages 1-26, July.
    8. Rihab Bedoui & Islem Kedidi, 2018. "Modeling Longevity Risk using Consistent Dynamics Affine Mortality Models," Working Papers hal-01678050, HAL.
    9. Ragnar Norberg, 2013. "Optimal hedging of demographic risk in life insurance," Finance and Stochastics, Springer, vol. 17(1), pages 197-222, January.
    10. Magdalena Homa, 2022. "The Impact of MT Strategies on Risk and Value Distribution of Unit-linked Insurance Portfolio," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 607-619.
    11. Marcus C. Christiansen, 2013. "Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates," Risks, MDPI, vol. 1(3), pages 1-20, October.
    12. Wang, Ting & Young, Virginia R., 2016. "Hedging pure endowments with mortality derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 238-255.
    13. Shen, Yang & Siu, Tak Kuen, 2013. "Longevity bond pricing under stochastic interest rate and mortality with regime-switching," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 114-123.
    14. Jevtić, Petar & Regis, Luca, 2015. "Assessing the solvency of insurance portfolios via a continuous-time cohort model," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 36-47.
    15. Marcus Christiansen & Andreas Niemeyer, 2015. "On the forward rate concept in multi-state life insurance," Finance and Stochastics, Springer, vol. 19(2), pages 295-327, April.
    16. Blackburn, Craig & Sherris, Michael, 2013. "Consistent dynamic affine mortality models for longevity risk applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 64-73.
    17. Luciano, Elisa & Regis, Luca & Vigna, Elena, 2012. "Delta–Gamma hedging of mortality and interest rate risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 402-412.
    18. K. Buchardt & C. Furrer & M. Steffensen, 2018. "Forward transition rates," Papers 1811.00137, arXiv.org, revised Apr 2019.
    19. Cox, Samuel H. & Lin, Yijia & Pedersen, Hal, 2010. "Mortality risk modeling: Applications to insurance securitization," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 242-253, February.
    20. Marcos Escobar & Mikhail Krayzler & Franz Ramsauer & David Saunders & Rudi Zagst, 2016. "Incorporation of Stochastic Policyholder Behavior in Analytical Pricing of GMABs and GMDBs," Risks, MDPI, vol. 4(4), pages 1-36, November.

    More about this item

    Keywords

    Affine processes; Doubly stochastic process; Multi-state life insurance models; Policyholder behaviour; Solvency II; Surrender;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:55:y:2014:i:c:p:167-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.