IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxvy2022i2p210-222.html
   My bibliography  Save this article

Determinants of Growth of the Electric Car Market – Investigating on the Truck Market

Author

Listed:
  • Tomasz Wisniewski
  • Blanka Tundys

Abstract

Purpose: The market for electric vehicles is growing steadily. Planned growth and market share of this type of vehicles are expected to change the face of global roads diametrically in the near future. Manufacturers as well as governments of individual countries are introducing new solutions and directions of development in order to support electromobility, strive for decarbonization and make transport, which is responsible for a large part of air pollution and other external costs, as environmentally neutral as possible. Therefore, it seems important to indicate the determinants, trends and barriers observed in the electric vehicle market, with particular emphasis on the truck market. The aim of the article is to present trends and barriers in the development of the market for electric vehicles and charging infrastructure for this type of vehicles. Design/Methodology/Approach: In the paper was used the method of critical analysis of scientific literature and quantitative methods. The following were used for this purpose materials and reports from available public databases, statistical offices and official websites of European organizations and companies dealing with electromobility and sustainable development based on alternative energy sources. Findings: The most important findings include: forecasts of the development of the electric freight vehicle market, identification of a catalogue of barriers and benefits and their interrelationships, and identification of opportunities to eliminate barriers to development through identification and awareness of the role of individual stakeholders. Practical Implications: The practical implications relate to showing companies what are the positive aspects of introducing electric vehicles into an organisation's fleet. Originality/value: The novelty and originality of the considerations is the inclusion of the same categories of barriers and development trends in the context of the development of the electric car market. As well as considering these categories from two perspectives. Some of the barriers may very quickly turn into benefits, but also benefits may quickly lose their potential if the barriers are not eliminated.

Suggested Citation

  • Tomasz Wisniewski & Blanka Tundys, 2022. "Determinants of Growth of the Electric Car Market – Investigating on the Truck Market," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 210-222.
  • Handle: RePEc:ers:journl:v:xxv:y:2022:i:2:p:210-222
    as

    Download full text from publisher

    File URL: https://ersj.eu/journal/2916/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jamie Morgan, 2020. "Electric vehicles: the future we made and the problem of unmaking it," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 44(4), pages 953-977.
    2. Tommi Inkinen & Esa Hämäläinen, 2020. "Reviewing Truck Logistics: Solutions for Achieving Low Emission Road Freight Transport," Sustainability, MDPI, vol. 12(17), pages 1-11, August.
    3. Jui-Che Tu & Chun Yang, 2019. "Key Factors Influencing Consumers’ Purchase of Electric Vehicles," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    4. Nathalie Ortar & Marianne Ryghaug, 2019. "Should All Cars Be Electric by 2025? The Electric Car Debate in Europe," Sustainability, MDPI, vol. 11(7), pages 1-16, March.
    5. Plötz, Patrick & Gnann, Till & Jochem, Patrick & Yilmaz, Hasan Ümitcan & Kaschub, Thomas, 2019. "Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions," Energy Policy, Elsevier, vol. 130(C), pages 32-40.
    6. Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
    7. Bradley W. Lane, 2021. "From early adopters to early quitters," Nature Energy, Nature, vol. 6(5), pages 458-459, May.
    8. Cao, Jidi & Chen, Xin & Qiu, Rui & Hou, Shuhua, 2021. "Electric vehicle industry sustainable development with a stakeholder engagement system," Technology in Society, Elsevier, vol. 67(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. František Pollák & Josef Vodák & Jakub Soviar & Peter Markovič & Gianluca Lentini & Valerio Mazzeschi & Alessandro Luè, 2021. "Promotion of Electric Mobility in the European Union—Overview of Project PROMETEUS from the Perspective of Cohesion through Synergistic Cooperation on the Example of the Catching-Up Region," Sustainability, MDPI, vol. 13(3), pages 1-26, February.
    2. Deidre Wolff & Lluc Canals Casals & Gabriela Benveniste & Cristina Corchero & Lluís Trilla, 2019. "The Effects of Lithium Sulfur Battery Ageing on Second-Life Possibilities and Environmental Life Cycle Assessment Studies," Energies, MDPI, vol. 12(12), pages 1-19, June.
    3. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    4. Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).
    5. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    6. Marit Mohr & Jens F. Peters & Manuel Baumann & Marcel Weil, 2020. "Toward a cell‐chemistry specific life cycle assessment of lithium‐ion battery recycling processes," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1310-1322, December.
    7. Christian Wankmüller & Maximilian Kunovjanek & Robert Gennaro Sposato & Gerald Reiner, 2020. "Selecting E-Mobility Transport Solutions for Mountain Rescue Operations," Energies, MDPI, vol. 13(24), pages 1-19, December.
    8. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    9. Rajan Varadarajan, 2017. "Innovating for sustainability: a framework for sustainable innovations and a model of sustainable innovations orientation," Journal of the Academy of Marketing Science, Springer, vol. 45(1), pages 14-36, January.
    10. Peter Mako & Andrej Dávid & Patrik Böhm & Sorin Savu, 2021. "Sustainable Transport in the Danube Region," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    11. Al Rainnie, 2021. "i4.0, 3D printing, deglobalisation and new manufacturing clusters: The view from Australia," The Economic and Labour Relations Review, , vol. 32(1), pages 115-133, March.
    12. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    13. Anders Skonhoft & Bjart Holtsmark, 2014. "The Norwegian support and subsidy of electric cars. Should it be adopted by other countries?," Working Paper Series 15814, Department of Economics, Norwegian University of Science and Technology.
    14. Bradley W. Lane, 2022. "The Global Rise of the Modern Plug‐In Electric Vehicle: Public Policy, Innovation and Strategy by John D. Graham, Edward Elgar Publishing, 2021, 489 pp., $157.50 (Elgar online)," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 41(1), pages 375-380, January.
    15. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    16. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    17. Bireswar Dutta & Hsin-Ginn Hwang, 2021. "Consumers Purchase Intentions of Green Electric Vehicles: The Influence of Consumers Technological and Environmental Considerations," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    18. Chun Yang & Jui-Che Tu & Qianling Jiang, 2020. "The Influential Factors of Consumers’ Sustainable Consumption: A Case on Electric Vehicles in China," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    19. Marmiroli, Benedetta & Venditti, Mattia & Dotelli, Giovanni & Spessa, Ezio, 2020. "The transport of goods in the urban environment: A comparative life cycle assessment of electric, compressed natural gas and diesel light-duty vehicles," Applied Energy, Elsevier, vol. 260(C).
    20. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.

    More about this item

    Keywords

    Electromobility; estimation; electric truck market.;
    All these keywords.

    JEL classification:

    • Q11 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Aggregate Supply and Demand Analysis; Prices
    • Q13 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Markets and Marketing; Cooperatives; Agribusiness
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxv:y:2022:i:2:p:210-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.