IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxivy2021ispecial1-part2p253-263.html
   My bibliography  Save this article

The Use of Transfer Learning with Very Deep Convolutional Neural Network in Quality Management

Author

Listed:
  • Grzegorz Kłosowski
  • Monika Kulisz
  • Jerzy Lipski
  • Michal Maj
  • Ryszard Bialek

Abstract

Purpose: The aim of the article is to develop an algorithm for classifying cracks in the analyzed images using modern methods of deep machine learning and transfer learning based on pretrained convolutional neural network - Inception-ResNet-v2. Design/Methodology/Approach: Transfer learning based on the pretrained convolutional neural network was used to categorize the images. The fully conected layer of the Inception-ResNet-v2 network has been modified. The last layer was trained using a two-class (binary) linear SVM (Support Vector Machine). In total, 20,000 training cases (images) were used to train the fully connected layer within transfer learning process. The research analyzed the possibility of using the deep neural networks for quick and fully automatic identification of cracks / defects on the surface of analyzed parts. Findings: The results indicate that pretrained convolutional neural network using SVM to train a fully connected layer is a very effective solution for visual crack / fault detection. In the analyzed model, a positive classification was obtained at the level of 99.89%. Practical Implications: The model presented in the article can be used in quality control carried out by process monitoring. An effective model for identifying defective parts can be used in both logistics and production processes. Originality/Value: A novelty is the use of a freely available, deep neural network trained to classify 1000 categories of various images for binary categorization of faults (cracks). The algorithm was adjusted by replacing the primary, 1000-output fully connected layer in the Inception-ResNet-v2 network with a binary layer (2 categories). The fully connected layer has been trained using the classification version of the popular SVM learner, but thanks to the combination of this layer with the sophisticated fearure extraction ability of the pre-trained Inception-ResNet-v2 deep network, the resulting predictive model enables the classification of defects with a very high level of accuracy.

Suggested Citation

  • Grzegorz Kłosowski & Monika Kulisz & Jerzy Lipski & Michal Maj & Ryszard Bialek, 2021. "The Use of Transfer Learning with Very Deep Convolutional Neural Network in Quality Management," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 253-263.
  • Handle: RePEc:ers:journl:v:xxiv:y:2021:i:special1-part2:p:253-263
    as

    Download full text from publisher

    File URL: https://ersj.eu/journal/2222/download
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Machine learning; quality management; deep learning; transfer learning; image classification.;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • L15 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Information and Product Quality
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxiv:y:2021:i:special1-part2:p:253-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.