IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxivy2021i2bp893-903.html
   My bibliography  Save this article

Influence of the Characteristics of Young Logisticians on the Level of Acceptance of Work in an Automated and Robotic Environment – A Survey Study

Author

Listed:
  • Hubert Wojciechowski
  • Michał Adamczak

Abstract

Purpose: Analysis of the impact of selected characteristics of young logisticians on the acceptance level and the level of anxiety related to working in an automated and robotic environment. Design/Methodology/Approach: The study was conducted using a questionnaire in which the questions were divided into two main sections. The first section was used to identify the individual characteristics of the respondents, the second section concerned the direct relation to work in an automated and robotized environment. Findings: Logistics students point to more positive aspects of using automated solutions and robots than negative ones. There are also features of these people determining the level of acceptance and the level of fear of working in an automated and robotized environment. Practical Implications: Knowledge of the features that predispose an employee to work in automated and robotic systems will allow for more effective recruitment and training, which will give a chance in an increase in the efficiency of processes. Originality/Value: The conducted research completes the research gap in the form of the lack of research on the relationship between the characteristics of young logistics professionals and the level of their acceptance of work in an automated and robotized environment.

Suggested Citation

  • Hubert Wojciechowski & Michał Adamczak, 2021. "Influence of the Characteristics of Young Logisticians on the Level of Acceptance of Work in an Automated and Robotic Environment – A Survey Study," European Research Studies Journal, European Research Studies Journal, vol. 0(2B), pages 893-903.
  • Handle: RePEc:ers:journl:v:xxiv:y:2021:i:2b:p:893-903
    as

    Download full text from publisher

    File URL: https://ersj.eu/journal/2298/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    2. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Frank Werner & Marina Ivanova, 2016. "A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 386-402, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sony, Michael & Naik, Subhash, 2020. "Industry 4.0 integration with socio-technical systems theory: A systematic review and proposed theoretical model," Technology in Society, Elsevier, vol. 61(C).
    2. Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    3. Kuang-Sheng Liu & Ming-Hung Lin, 2021. "Performance Assessment on the Application of Artificial Intelligence to Sustainable Supply Chain Management in the Construction Material Industry," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    4. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    5. Ivanov, Dmitry & Dolgui, Alexandre & Sokolov, Boris, 2022. "Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    6. Fosso Wamba, Samuel & Queiroz, Maciel M. & Trinchera, Laura, 2024. "The role of artificial intelligence-enabled dynamic capability on environmental performance: The mediation effect of a data-driven culture in France and the USA," International Journal of Production Economics, Elsevier, vol. 268(C).
    7. Turkcan, Hulya & Imamoglu, Salih Zeki & Ince, Huseyin, 2022. "To be more innovative and more competitive in dynamic environments: The role of additive manufacturing," International Journal of Production Economics, Elsevier, vol. 246(C).
    8. Rihab Khemiri & Khaoula Elbedoui-Maktouf & Bernard Grabot & Belhassen Zouari, 2017. "A fuzzy multi-criteria decision making approach for managing performance and risk in integrated procurement-production planning," Post-Print hal-01758604, HAL.
    9. Vasja Roblek & Maja Meško & Alojz Krapež, 2016. "A Complex View of Industry 4.0," SAGE Open, , vol. 6(2), pages 21582440166, June.
    10. Yuran Jin & Cheng Gao, 2023. "Hybrid Optimization of Green Supply Chain Network and Scheduling in Distributed 3D Printing Intelligent Factory," Sustainability, MDPI, vol. 15(7), pages 1-20, March.
    11. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    12. Yun, Na, 2023. "Nexus among carbon intensity and natural resources utilization on economic development: Econometric analysis from China," Resources Policy, Elsevier, vol. 83(C).
    13. Sundarakani, Balan & Ajaykumar, Aneesh & Gunasekaran, Angappa, 2021. "Big data driven supply chain design and applications for blockchain: An action research using case study approach," Omega, Elsevier, vol. 102(C).
    14. Syed Abdul Rehman Khan & Muhammad Waqas & Xue Honggang & Naveed Ahmad & Zhang Yu, 2022. "Adoption of innovative strategies to mitigate supply chain disruption: COVID-19 pandemic," Operations Management Research, Springer, vol. 15(3), pages 1115-1133, December.
    15. Xie, Xuemei & Wu, Yonghui & Palacios-Marqués, Daniel & Ribeiro-Navarrete, Samuel, 2022. "Business networks and organizational resilience capacity in the digital age during COVID-19: A perspective utilizing organizational information processing theory," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    16. Li, Miaomiao & Cao, Guikun & Cui, Li & Liu, Xiaoquan & Dai, Jing, 2023. "Examining how government subsidies influence firms’ circular supply chain management: The role of eco-innovation and top management team," International Journal of Production Economics, Elsevier, vol. 261(C).
    17. Saha, Esha & Rathore, Pradeep & Parida, Ratri & Rana, Nripendra P., 2022. "The interplay of emerging technologies in pharmaceutical supply chain performance: An empirical investigation for the rise of Pharma 4.0," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    18. Lyulyov, Oleksii & Pimonenko, Tetyana & Saura, Jose Ramon & Barbosa, Belem, 2024. "How do e-governance and e-business drive sustainable development goals?," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    19. De Giovanni, Pietro, 2021. "Smart Supply Chains with vendor managed inventory, coordination, and environmental performance," European Journal of Operational Research, Elsevier, vol. 292(2), pages 515-531.
    20. Tygran Dzhuguryan & Agnieszka Deja, 2021. "Sustainable Waste Management for a City Multifloor Manufacturing Cluster: A Framework for Designing a Smart Supply Chain," Sustainability, MDPI, vol. 13(3), pages 1-25, February.

    More about this item

    Keywords

    Logistics 4.0; sustainable development; acceptance of work in a robotized environment.;
    All these keywords.

    JEL classification:

    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxiv:y:2021:i:2b:p:893-903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.