IDEAS home Printed from https://ideas.repec.org/a/erh/journl/v1y2009i1p18-27.html
   My bibliography  Save this article

What Now? Some Brief Reflections on Model-Free Data Analysis

Author

Listed:
  • Richard Berk

    (University of Pennsylvania)

Abstract

David Freedman’s critique of causal modeling in the social and biomedical sciences was fundamental. In his view, the enterprise was misguided, and there was no technical fix. Far too often, there was a disconnect between what the statistical methods required and the substantive information that could be brought to bear. In this paper, I briefly consider some alternatives to causal modeling assuming that David Freedman’s perspective on modeling is correct. In addition to randomized experiments and strong quasi-experiments, I discuss multivariate statistical analysis, exploratory data analysis, dynamic graphics, machine learning and knowledge discovery.

Suggested Citation

  • Richard Berk, 2009. "What Now? Some Brief Reflections on Model-Free Data Analysis," International Econometric Review (IER), Econometric Research Association, vol. 1(1), pages 18-27, April.
  • Handle: RePEc:erh:journl:v:1:y:2009:i:1:p:18-27
    as

    Download full text from publisher

    File URL: http://www.era.org.tr/makaleler/2050034.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    2. D. A. Freedman & P. B. Stark & K. W. Wachter, 2001. "A probability model for census adjustment," Mathematical Population Studies, Taylor & Francis Journals, vol. 9(2), pages 165-180.
    3. Kenneth W. Wachter & David A. Freedman, 2000. "Measuring Local Heterogeneity with 1990 U.S. Census Data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 3(10).
    4. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    5. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    6. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    7. Klaus Nordhausen, 2009. "The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman," International Statistical Review, International Statistical Institute, vol. 77(3), pages 482-482, December.
    8. James J. Heckman, 2000. "Causal Parameters and Policy Analysis in Economics: A Twentieth Century Retrospective," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(1), pages 45-97.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    2. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    3. Toro, Weily & Tigre, Robson & Sampaio, Breno, 2015. "Daylight Saving Time and incidence of myocardial infarction: Evidence from a regression discontinuity design," Economics Letters, Elsevier, vol. 136(C), pages 1-4.
    4. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    5. Battistin, Erich & Chesher, Andrew, 2014. "Treatment effect estimation with covariate measurement error," Journal of Econometrics, Elsevier, vol. 178(2), pages 707-715.
    6. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    7. repec:jdm:journl:v:17:y:2022:i:6:p:1176-1207 is not listed on IDEAS
    8. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    10. Zhao, Chuanmin & Qu, Xi & Luo, Shougui, 2019. "Impact of the InnoCom program on corporate innovation performance in China: Evidence from Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 103-118.
    11. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2013. "Honest confidence regions for a regression parameter in logistic regression with a large number of controls," CeMMAP working papers CWP67/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Mauricio Villamizar‐Villegas & Freddy A. Pinzon‐Puerto & Maria Alejandra Ruiz‐Sanchez, 2022. "A comprehensive history of regression discontinuity designs: An empirical survey of the last 60 years," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1130-1178, September.
    13. repec:cup:judgdm:v:17:y:2022:i:6:p:1176-1207 is not listed on IDEAS
    14. Benjamin Schünemann & Michael Lechner & Conny Wunsch, 2015. "Do Long-Term Unemployed Workers Benefit from Targeted Wage Subsidies?," German Economic Review, Verein für Socialpolitik, vol. 16(1), pages 43-64, February.
    15. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    16. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls," Papers 1201.0224, arXiv.org, revised May 2012.
    17. Michael Lechner & Anthony Strittmatter, 2019. "Practical procedures to deal with common support problems in matching estimation," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 193-207, February.
    18. Philipp Ketz, 2022. "Allowing for weak identification when testing GARCH-X type models," Papers 2210.11398, arXiv.org.
    19. Jeff Borland & Yi-Ping Tseng & Roger Wilkins, 2005. "Experimental and Quasi-Experimental Methods of Microeconomic Program and Policy Evaluation," Melbourne Institute Working Paper Series wp2005n08, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    20. Su, Jiun-Hua, 2021. "Model selection in utility-maximizing binary prediction," Journal of Econometrics, Elsevier, vol. 223(1), pages 96-124.
    21. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert J. & Smith, Jeffrey A. & Taylor, Evan J., 2015. "Simple Tests for Selection Bias: Learning More from Instrumental Variables," IZA Discussion Papers 9346, Institute of Labor Economics (IZA).
    22. Karthik Muralidharan & Mauricio Romero & Kaspar Wüthrich, 2019. "Factorial Designs, Model Selection, and (Incorrect) Inference in Randomized Experiments," NBER Working Papers 26562, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Causal Modeling; Regression Analysis; Exploratory Data Analysis; Data Science;
    All these keywords.

    JEL classification:

    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:erh:journl:v:1:y:2009:i:1:p:18-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: M. F. Cosar (email available below). General contact details of provider: https://edirc.repec.org/data/eratrea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.