IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v93y2020icp1-16.html
   My bibliography  Save this article

The evolution of dynamic interactions between the knowledge development of powertrain systems

Author

Listed:
  • Mirzadeh Phirouzabadi, Amir
  • Savage, David
  • Blackmore, Karen
  • Juniper, James

Abstract

Competition in the already highly competitive automotive industry intensified in the early 1990's. The ubiquitous internal combustion engine began to be challenged by the upstart alternatives of battery and hybrid electric vehicles, which has led to an intricate web of knowledge development. Our research aims to qualify and quantify the dynamic relationships that formed in the knowledge development of powertrains by adopting conceptual insights from evolutionary ecology. Specifically, the interdependent relationships observed in the Technological Innovation System (TIS) framework is similar to that between species such that powertrain systems can either support or inhibit the knowledge growth of one another over time. Our theoretical framework extends the economics of technical change within technologies vis-à-vis the concept of ‘positive and negative externalities’ and ‘knowledge development co-dynamics’. We use patents data extracted from Thomson Reuters' Derwent Innovations Index to measure the knowledge development in each technological field and apply the biological Lotka-Volterra (L-V) model to analyse the data across three separate time periods 1985–1996, 1997–2007, and 2008–2016. Our results show that the behaviour of the powertrain systems change over time as they have behaved as creative (or uncreative) and explorative (or exploitative). We also demonstrate that the powertrain systems go through temporal transitions where the relationship mode between them changes between amensalism, parasitism, commensalism, and symbiosis. In line with this we recommend that policy makers not only devise strategies (offensive or defensive) for each interaction modes but to also consider changing their strategies when there is transition between the modes. Furthermore, policy makers should consider the dual role of ‘creation’ and ‘destruction’ in their innovation policy mixes.

Suggested Citation

  • Mirzadeh Phirouzabadi, Amir & Savage, David & Blackmore, Karen & Juniper, James, 2020. "The evolution of dynamic interactions between the knowledge development of powertrain systems," Transport Policy, Elsevier, vol. 93(C), pages 1-16.
  • Handle: RePEc:eee:trapol:v:93:y:2020:i:c:p:1-16
    DOI: 10.1016/j.tranpol.2020.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X19306560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2020.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coccia, Mario, 2019. "The theory of technological parasitism for the measurement of the evolution of technology and technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 289-304.
    2. Javid, Roxana J. & Nejat, Ali, 2017. "A comprehensive model of regional electric vehicle adoption and penetration," Transport Policy, Elsevier, vol. 54(C), pages 30-42.
    3. Marc Dijk, 2014. "A socio-technical perspective on the electrification of the automobile: niche and regime interaction," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 14(2), pages 158-171.
    4. Dijk, Marc & Wells, Peter & Kemp, René, 2016. "Will the momentum of the electric car last? Testing an hypothesis on disruptive innovation," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 77-88.
    5. Barbieri, Nicolò, 2016. "Fuel prices and the invention crowding out effect: Releasing the automotive industry from its dependence on fossil fuel," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 222-234.
    6. Faria, Lourenço Galvão Diniz & Andersen, Maj Munch, 2017. "Sectoral patterns versus firm-level heterogeneity - The dynamics of eco-innovation strategies in the automotive sector," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 266-281.
    7. Lourenco G. D. Faria & Maj M. Andersen, 2017. "Sectoral dynamics and technological convergence: an evolutionary analysis of eco-innovation in the automotive sector," Industry and Innovation, Taylor & Francis Journals, vol. 24(8), pages 837-857, November.
    8. Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
    9. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    10. Weitzman, Martin L, 1996. "Hybridizing Growth Theory," American Economic Review, American Economic Association, vol. 86(2), pages 207-212, May.
    11. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    12. Clark, Kim B., 1985. "The interaction of design hierarchies and market concepts in technological evolution," Research Policy, Elsevier, vol. 14(5), pages 235-251, October.
    13. Dijk, Marc & Orsato, Renato J. & Kemp, René, 2013. "The emergence of an electric mobility trajectory," Energy Policy, Elsevier, vol. 52(C), pages 135-145.
    14. Cerqueti, Roy & Tramontana, Fabio & Ventura, Marco, 2015. "On the coexistence of innovators and imitators," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 487-496.
    15. Dijk, Marc & Orsato, Renato J. & Kemp, René, 2015. "Towards a regime-based typology of market evolution," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 276-289.
    16. Adepetu, Adedamola & Keshav, Srinivasan & Arya, Vijay, 2016. "An agent-based electric vehicle ecosystem model: San Francisco case study," Transport Policy, Elsevier, vol. 46(C), pages 109-122.
    17. Murmann, Johann Peter & Frenken, Koen, 2006. "Toward a systematic framework for research on dominant designs, technological innovations, and industrial change," Research Policy, Elsevier, vol. 35(7), pages 925-952, September.
    18. Haley, Brendan, 2018. "Integrating structural tensions into technological innovation systems analysis: Application to the case of transmission interconnections and renewable electricity in Nova Scotia, Canada," Research Policy, Elsevier, vol. 47(6), pages 1147-1160.
    19. Vanessa OLTRA (E3i-IFReDE-GRES) & Maïder SAINT-JEAN (E3i-IFReDE-GRES), 2006. "Variety of technological trajectories in low emission vehicles (LEVs): a patent data analysis," Cahiers du GRES (2002-2009) 2006-20, Groupement de Recherches Economiques et Sociales.
    20. Pasaoglu, Guzay & Harrison, Gillian & Jones, Lee & Hill, Andrew & Beaudet, Alexandre & Thiel, Christian, 2016. "A system dynamics based market agent model simulating future powertrain technology transition: Scenarios in the EU light duty vehicle road transport sector," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 133-146.
    21. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    22. Eppstein, Margaret J. & Grover, David K. & Marshall, Jeffrey S. & Rizzo, Donna M., 2011. "An agent-based model to study market penetration of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 39(6), pages 3789-3802, June.
    23. Kivimaa, Paula & Kern, Florian, 2016. "Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions," Research Policy, Elsevier, vol. 45(1), pages 205-217.
    24. Jean‐Philippe Vergne & Rodolphe Durand, 2010. "The Missing Link Between the Theory and Empirics of Path Dependence: Conceptual Clarification, Testability Issue, and Methodological Implications," Journal of Management Studies, Wiley Blackwell, vol. 47(4), pages 736-759, June.
    25. She, Zhen-Yu & Qing Sun, & Ma, Jia-Jun & Xie, Bai-Chen, 2017. "What are the barriers to widespread adoption of battery electric vehicles? A survey of public perception in Tianjin, China," Transport Policy, Elsevier, vol. 56(C), pages 29-40.
    26. Sierzchula, William & Nemet, Gregory, 2015. "Using patents and prototypes for preliminary evaluation of technology-forcing policies: Lessons from California's Zero Emission Vehicle regulations," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 213-224.
    27. Pistorius, C. W. I. & Utterback, J. M., 1997. "Multi-mode interaction among technologies," Research Policy, Elsevier, vol. 26(1), pages 67-84, March.
    28. Rudolph, Christian, 2016. "How may incentives for electric cars affect purchase decisions?," Transport Policy, Elsevier, vol. 52(C), pages 113-120.
    29. Guanglu Zhang & Douglas Allaire & Venkatesh Shankar & Daniel A McAdams, 2019. "A case against the trickle-down effect in technology ecosystems," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-7, June.
    30. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    31. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2000. "Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not)," NBER Working Papers 7552, National Bureau of Economic Research, Inc.
    32. Hodgson, Geoffrey M. & Knudsen, Thorbjorn, 2006. "Why we need a generalized Darwinism, and why generalized Darwinism is not enough," Journal of Economic Behavior & Organization, Elsevier, vol. 61(1), pages 1-19, September.
    33. Zhang, Guanglu & McAdams, Daniel A. & Shankar, Venkatesh & Darani, Milad Mohammadi, 2017. "Modeling the evolution of system technology performance when component and system technology performances interact: Commensalism and amensalism," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 116-124.
    34. Franke, Thomas & Krems, Josef F., 2013. "What drives range preferences in electric vehicle users?," Transport Policy, Elsevier, vol. 30(C), pages 56-62.
    35. David J. Teece & Gary Pisano & Amy Shuen, 1997. "Dynamic capabilities and strategic management," Strategic Management Journal, Wiley Blackwell, vol. 18(7), pages 509-533, August.
    36. Ksenia Onufrey & Anna Bergek, 2015. "Self-reinforcing Mechanisms in a Multi-technology Industry: Understanding Sustained Technological Variety in a Context of Path Dependency," Industry and Innovation, Taylor & Francis Journals, vol. 22(6), pages 523-551, August.
    37. Sandén, Björn A. & Hillman, Karl M., 2011. "A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden," Research Policy, Elsevier, vol. 40(3), pages 403-414, April.
    38. Richard E. Lenski & Charles Ofria & Robert T. Pennock & Christoph Adami, 2003. "The evolutionary origin of complex features," Nature, Nature, vol. 423(6936), pages 139-144, May.
    39. Wesseling, J.H. & Faber, J. & Hekkert, M.P., 2014. "How competitive forces sustain electric vehicle development," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 154-164.
    40. Hyundo Choi, 2018. "Technology-push and demand-pull factors in emerging sectors: evidence from the electric vehicle market," Industry and Innovation, Taylor & Francis Journals, vol. 25(7), pages 655-674, August.
    41. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    42. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    43. Markard, Jochen & Hoffmann, Volker H., 2016. "Analysis of complementarities: Framework and examples from the energy transition," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 63-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirzadeh Phirouzabadi, Amir & Blackmore, Karen & Savage, David & Juniper, James, 2022. "Modelling and simulating a multi-modal and multi-dimensional technology interaction framework: The case of vehicle powertrain technologies in the US market," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    2. Andrea Ferloni, 2021. "Transitions as a coevolutionary process: the urban emergence of electric vehicle inventions," GEIST - Geography of Innovation and Sustainability Transitions 2021(10), GEIST Working Paper Series.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirzadeh Phirouzabadi, Amir & Blackmore, Karen & Savage, David & Juniper, James, 2022. "Modelling and simulating a multi-modal and multi-dimensional technology interaction framework: The case of vehicle powertrain technologies in the US market," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    2. Thomas Magnusson & Viktor Werner, 2023. "Conceptualisations of incumbent firms in sustainability transitions: Insights from organisation theory and a systematic literature review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 903-919, February.
    3. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    4. Markard, Jochen, 2020. "The life cycle of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    5. Mohammadreza Zolfagharian & Bob Walrave & A. Georges L. Romme & Rob Raven, 2020. "Toward the Dynamic Modeling of Transition Problems: The Case of Electric Mobility," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    6. Leitch, Aletta & Haley, Brendan & Hastings-Simon, Sara, 2019. "Can the oil and gas sector enable geothermal technologies? Socio-technical opportunities and complementarity failures in Alberta, Canada," Energy Policy, Elsevier, vol. 125(C), pages 384-395.
    7. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    8. Sorrell, Steve, 2018. "Explaining sociotechnical transitions: A critical realist perspective," Research Policy, Elsevier, vol. 47(7), pages 1267-1282.
    9. Berkeley, Nigel & Bailey, David & Jones, Andrew & Jarvis, David, 2017. "Assessing the transition towards Battery Electric Vehicles: A Multi-Level Perspective on drivers of, and barriers to, take up," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 320-332.
    10. Sandén, Björn A. & Hillman, Karl M., 2011. "A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden," Research Policy, Elsevier, vol. 40(3), pages 403-414, April.
    11. Haley, Brendan, 2018. "Integrating structural tensions into technological innovation systems analysis: Application to the case of transmission interconnections and renewable electricity in Nova Scotia, Canada," Research Policy, Elsevier, vol. 47(6), pages 1147-1160.
    12. Steen, Markus & Weaver, Tyson, 2017. "Incumbents’ diversification and cross-sectorial energy industry dynamics," Research Policy, Elsevier, vol. 46(6), pages 1071-1086.
    13. Mäkitie, Tuukka & Hanson, Jens & Steen, Markus & Hansen, Teis & Andersen, Allan Dahl, 2022. "Complementarity formation mechanisms in technology value chains," Research Policy, Elsevier, vol. 51(7).
    14. Tobias Buchmann & Patrick Wolf & Stefan Fidaschek, 2021. "Stimulating E-Mobility Diffusion in Germany (EMOSIM): An Agent-Based Simulation Approach," Energies, MDPI, vol. 14(3), pages 1-25, January.
    15. Garud, Raghu & Gehman, Joel, 2012. "Metatheoretical perspectives on sustainability journeys: Evolutionary, relational and durational," Research Policy, Elsevier, vol. 41(6), pages 980-995.
    16. Kejia Yang & Johan Schot & Bernhard Truffer, 2020. "Shaping the Directionality of Sustainability Transitions: The Diverging Development Patterns of Solar PV in Two Chinese Provinces," SPRU Working Paper Series 2020-14, SPRU - Science Policy Research Unit, University of Sussex Business School.
    17. Jonas Heiberg & Christian Binz & Bernhard Truffer, 2020. "Assessing transitions through socio-technical network analysis – a methodological framework and a case study from the water sector," Papers in Evolutionary Economic Geography (PEEG) 2035, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2020.
    18. Raven, Rob & Walrave, Bob, 2020. "Overcoming transformational failures through policy mixes in the dynamics of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    19. Maria Tomai & Shyama V. Ramani & George Papachristos, 2024. "How Can We Design Policy Better? Frameworks and Approaches for Sustainability Transitions," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    20. Heiberg, Jonas & Truffer, Bernhard & Binz, Christian, 2022. "Assessing transitions through socio-technical configuration analysis – a methodological framework and a case study in the water sector," Research Policy, Elsevier, vol. 51(1).

    More about this item

    Keywords

    Technological innovation system; Powertrain technologies; Knowledge development; Dynamic interaction; Patent analysis; Lotka-Volterra equations;
    All these keywords.

    JEL classification:

    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • L62 - Industrial Organization - - Industry Studies: Manufacturing - - - Automobiles; Other Transportation Equipment; Related Parts and Equipment
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:93:y:2020:i:c:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.