IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v100y2015icp213-224.html
   My bibliography  Save this article

Using patents and prototypes for preliminary evaluation of technology-forcing policies: Lessons from California's Zero Emission Vehicle regulations

Author

Listed:
  • Sierzchula, William
  • Nemet, Gregory

Abstract

Technology-forcing policies are one of several measures that governments have at their disposal in order to address market failures arising from knowledge spillover and pollution externalities. However due to uncertainty and information asymmetry, pre-commercial evaluation of these policies can be difficult, especially for radically novel technologies. We use a case study of California's Zero-Emission Vehicle (ZEV) regulations and their impact on electric vehicle technology development by the 21 largest auto manufacturers 1991–2013 to determine whether patents and prototypes are valid preliminary indicators to evaluate the effectiveness of technology-forcing policies. In order to better understand automaker R&D activity, it was necessary to include a global perspective. The results show that patents, when embedded within a global industrial perspective, can be used to analyze technology-forcing policies, which provides a helpful tool for policy makers gauging the effectiveness of these types of regulations in pre-commercial or early market environments.

Suggested Citation

  • Sierzchula, William & Nemet, Gregory, 2015. "Using patents and prototypes for preliminary evaluation of technology-forcing policies: Lessons from California's Zero Emission Vehicle regulations," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 213-224.
  • Handle: RePEc:eee:tefoso:v:100:y:2015:i:c:p:213-224
    DOI: 10.1016/j.techfore.2015.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162515002127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2015.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    2. Ernst, Holger, 2001. "Patent applications and subsequent changes of performance: evidence from time-series cross-section analyses on the firm level," Research Policy, Elsevier, vol. 30(1), pages 143-157, January.
    3. Vanessa Oltra & Maïder Saint Jean, 2006. "Variety of technological trajectories in low emission vehicles (LEVs): a patent data analysis," Post-Print hal-00155042, HAL.
    4. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
    5. Sperling, Dan & Collantes, Gustavo O, 2008. "The origin of California’s zero emission vehicle mandate," Institute of Transportation Studies, Working Paper Series qt9pd8m8gs, Institute of Transportation Studies, UC Davis.
    6. Rennings, Klaus, 2000. "Redefining innovation -- eco-innovation research and the contribution from ecological economics," Ecological Economics, Elsevier, vol. 32(2), pages 319-332, February.
    7. Flachaire, Emmanuel, 1999. "A better way to bootstrap pairs," Economics Letters, Elsevier, vol. 64(3), pages 257-262, September.
    8. Wells, Peter & Nieuwenhuis, Paul, 2012. "Transition failure: Understanding continuity in the automotive industry," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1681-1692.
    9. Bakker, Sjoerd & van Lente, Harro & Meeus, Marius T.H., 2012. "Dominance in the prototyping phase—The case of hydrogen passenger cars," Research Policy, Elsevier, vol. 41(5), pages 871-883.
    10. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    11. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    12. Suarez, Fernando F., 2004. "Battles for technological dominance: an integrative framework," Research Policy, Elsevier, vol. 33(2), pages 271-286, March.
    13. Tran, Martino & Banister, David & Bishop, Justin D.K. & McCulloch, Malcolm D., 2013. "Simulating early adoption of alternative fuel vehicles for sustainability," Technological Forecasting and Social Change, Elsevier, vol. 80(5), pages 865-875.
    14. Dijk, Marc & Orsato, Renato J. & Kemp, René, 2013. "The emergence of an electric mobility trajectory," Energy Policy, Elsevier, vol. 52(C), pages 135-145.
    15. David Popp & Richard G. Newell, 2009. "Where Does Energy R&D Come From? Examining Crowding Out from Environmentally-Friendly R&D," NBER Working Papers 15423, National Bureau of Economic Research, Inc.
    16. Collantes, Gustavo & Sperling, Daniel, 2008. "The origin of California's zero emission vehicle mandate," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1302-1313, December.
    17. Gallagher, Kelly Sims & Muehlegger, Erich, 2011. "Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 1-15, January.
    18. Diamond, David, 2009. "The impact of government incentives for hybrid-electric vehicles: Evidence from US states," Energy Policy, Elsevier, vol. 37(3), pages 972-983, March.
    19. J Patchell, 1999. "Creating the Japanese Electric Vehicle Industry: The Challenges of Uncertainty and Cooperation," Environment and Planning A, , vol. 31(6), pages 997-1016, June.
    20. Wesseling, J.H. & Faber, J. & Hekkert, M.P., 2014. "How competitive forces sustain electric vehicle development," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 154-164.
    21. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Skeete, Jean-Paul, 2018. "Level 5 autonomy: The new face of disruption in road transport," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 22-34.
    2. Zhongju Liao, 2018. "Market Orientation and FIRMS' Environmental Innovation: The Moderating Role of Environmental Attitude," Business Strategy and the Environment, Wiley Blackwell, vol. 27(1), pages 117-127, January.
    3. Ying Xie & Jie Wu & Hannian Zhi & Muhammad Riaz & Liangpeng Wu, 2023. "A Study on the Evolution of Competition in China’s Auto Market Considering Market Capacity Constraints and a Game Payoff Matrix: Based on the Dual Credit Policy," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    4. Mirzadeh Phirouzabadi, Amir & Savage, David & Blackmore, Karen & Juniper, James, 2020. "The evolution of dynamic interactions between the knowledge development of powertrain systems," Transport Policy, Elsevier, vol. 93(C), pages 1-16.
    5. Cao, Jidi & Chen, Xin & Qiu, Rui & Hou, Shuhua, 2021. "Electric vehicle industry sustainable development with a stakeholder engagement system," Technology in Society, Elsevier, vol. 67(C).
    6. Zhao Qu & Shanshan Zhang, 2020. "References to literature from the business sector in patent documents: a case study of charging technologies for electric vehicles," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 867-886, August.
    7. Mirzadeh Phirouzabadi, Amir & Blackmore, Karen & Savage, David & Juniper, James, 2022. "Modelling and simulating a multi-modal and multi-dimensional technology interaction framework: The case of vehicle powertrain technologies in the US market," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    8. Garrido-Prada, Pablo & Lenihan, Helena & Doran, Justin & Rammer, Christian & Perez-Alaniz, Mauricio, 2021. "Driving the circular economy through public environmental and energy R&D: Evidence from SMEs in the European Union," Ecological Economics, Elsevier, vol. 182(C).
    9. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
    10. Melton, Noel & Axsen, Jonn & Goldberg, Suzanne, 2017. "Evaluating plug-in electric vehicle policies in the context of long-term greenhouse gas reduction goals: Comparing 10 Canadian provinces using the “PEV policy report card”," Energy Policy, Elsevier, vol. 107(C), pages 381-393.
    11. Kangda Chen & Fuquan Zhao & Han Hao & Zongwei Liu, 2018. "Synergistic Impacts of China’s Subsidy Policy and New Energy Vehicle Credit Regulation on the Technological Development of Battery Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-19, November.
    12. Shenggang Ren & Yue Wang & Yucai Hu & Ji Yan, 2021. "CEO hometown identity and firm green innovation," Business Strategy and the Environment, Wiley Blackwell, vol. 30(2), pages 756-774, February.
    13. Ma, Shao-Chao & Fan, Ying & Feng, Lianyong, 2017. "An evaluation of government incentives for new energy vehicles in China focusing on vehicle purchasing restrictions," Energy Policy, Elsevier, vol. 110(C), pages 609-618.
    14. He, Haonan & Li, Shiqiang & Wang, Shanyong & Zhang, Chaojia & Ma, Fei, 2023. "Value of dual-credit policy: Evidence from green technology innovation efficiency," Transport Policy, Elsevier, vol. 139(C), pages 182-198.
    15. Zhao, Dan & Ji, Shou-feng & Wang, He-ping & Jiang, Li-wen, 2021. "How do government subsidies promote new energy vehicle diffusion in the complex network context? A three-stage evolutionary game model," Energy, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. H. Wesseling & E. M. M. I. Niesten & J. Faber & M. P. Hekkert, 2015. "Business Strategies of Incumbents in the Market for Electric Vehicles: Opportunities and Incentives for Sustainable Innovation," Business Strategy and the Environment, Wiley Blackwell, vol. 24(6), pages 518-531, September.
    2. Yang, Fuxia & Yang, Mian, 2015. "Analysis on China's eco-innovations: Regulation context, intertemporal change and regional differences," European Journal of Operational Research, Elsevier, vol. 247(3), pages 1003-1012.
    3. Kim, Yeong Jae & Brown, Marilyn, 2019. "Impact of domestic energy-efficiency policies on foreign innovation: The case of lighting technologies," Energy Policy, Elsevier, vol. 128(C), pages 539-552.
    4. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    5. Francesco Nicolli & Francesco Vona & Lionel Nesta, 2012. "Determinants of Renewable Energy Innovation: Environmental Policies vs. Market Regulation," Working Papers 201204, University of Ferrara, Department of Economics.
    6. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    7. Valeria Costantini & Francesco Crespi, 2013. "Public policies for a sustainable energy sector: regulation, diversity and fostering of innovation," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 401-429, April.
    8. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    9. Cantono, Simona, 2012. "Unveiling diffusion dynamics: an autocatalytic percolation model of environmental innovation diffusion and the optimal dynamic path of adoption subsidies," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201222, University of Turin.
    10. repec:spo:wpmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    11. Noailly, Joëlle & Batrakova, Svetlana, 2010. "Stimulating energy-efficient innovations in the Dutch building sector: Empirical evidence from patent counts and policy lessons," Energy Policy, Elsevier, vol. 38(12), pages 7803-7817, December.
    12. Kemp, René & Pontoglio, Serena, 2011. "The innovation effects of environmental policy instruments — A typical case of the blind men and the elephant?," Ecological Economics, Elsevier, vol. 72(C), pages 28-36.
    13. Hoppmann, Joern & Peters, Michael & Schneider, Malte & Hoffmann, Volker H., 2013. "The two faces of market support—How deployment policies affect technological exploration and exploitation in the solar photovoltaic industry," Research Policy, Elsevier, vol. 42(4), pages 989-1003.
    14. Martin Kalthaus & Jiatang Sun, 2021. "Determinants of Electric Vehicle Diffusion in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(3), pages 473-510, November.
    15. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    16. Bergek, Anna & Berggren, Christian, 2014. "The impact of environmental policy instruments on innovation: A review of energy and automotive industry studies," Ecological Economics, Elsevier, vol. 106(C), pages 112-123.
    17. Thomas Magnusson & Viktor Werner, 2023. "Conceptualisations of incumbent firms in sustainability transitions: Insights from organisation theory and a systematic literature review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 903-919, February.
    18. DeShazo, J.R. & Sheldon, Tamara L. & Carson, Richard T., 2017. "Designing policy incentives for cleaner technologies: Lessons from California's plug-in electric vehicle rebate program," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 18-43.
    19. Carrión-Flores, Carmen E. & Innes, Robert, 2010. "Environmental innovation and environmental performance," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 27-42, January.
    20. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    21. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    22. Orsatti, Gianluca & Pezzoni, Michele & Quatraro, Francesco, 2017. "Where Do Green Technologies Come From? Inventor Teams’ Recombinant Capabilities and the Creation of New Knowledge," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201711, University of Turin.
    23. Rogge, Karoline S. & Hoffmann, Volker H., 2009. "The impact of the EU ETS on the sectoral innovation system for power generation technologies: findings for Germany," Working Papers "Sustainability and Innovation" S2/2009, Fraunhofer Institute for Systems and Innovation Research (ISI).
    24. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:100:y:2015:i:c:p:213-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.