IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v423y2003i6936d10.1038_nature01568.html
   My bibliography  Save this article

The evolutionary origin of complex features

Author

Listed:
  • Richard E. Lenski

    (Michigan State University)

  • Charles Ofria

    (Michigan State University)

  • Robert T. Pennock

    (Michigan State University)

  • Christoph Adami

    (California Institute of Technology)

Abstract

A long-standing challenge to evolutionary theory has been whether it can explain the origin of complex organismal features. We examined this issue using digital organisms—computer programs that self-replicate, mutate, compete and evolve. Populations of digital organisms often evolved the ability to perform complex logic functions requiring the coordinated execution of many genomic instructions. Complex functions evolved by building on simpler functions that had evolved earlier, provided that these were also selectively favoured. However, no particular intermediate stage was essential for evolving complex functions. The first genotypes able to perform complex functions differed from their non-performing parents by only one or two mutations, but differed from the ancestor by many mutations that were also crucial to the new functions. In some cases, mutations that were deleterious when they appeared served as stepping-stones in the evolution of complex features. These findings show how complex functions can originate by random mutation and natural selection.

Suggested Citation

  • Richard E. Lenski & Charles Ofria & Robert T. Pennock & Christoph Adami, 2003. "The evolutionary origin of complex features," Nature, Nature, vol. 423(6936), pages 139-144, May.
  • Handle: RePEc:nat:nature:v:423:y:2003:i:6936:d:10.1038_nature01568
    DOI: 10.1038/nature01568
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01568
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirzadeh Phirouzabadi, Amir & Savage, David & Blackmore, Karen & Juniper, James, 2020. "The evolution of dynamic interactions between the knowledge development of powertrain systems," Transport Policy, Elsevier, vol. 93(C), pages 1-16.
    2. Deck, Cary & Sarangi, Sudipta & Wiser, Matt, 2017. "An experimental investigation of simultaneous multi-battle contests with strategic complementarities," Journal of Economic Psychology, Elsevier, vol. 63(C), pages 117-134.
    3. Dimitris Iliopoulos & Arend Hintze & Christoph Adami, 2010. "Critical Dynamics in the Evolution of Stochastic Strategies for the Iterated Prisoner's Dilemma," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-8, October.
    4. Jeffrey A Edlund & Nicolas Chaumont & Arend Hintze & Christof Koch & Giulio Tononi & Christoph Adami, 2011. "Integrated Information Increases with Fitness in the Evolution of Animats," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-13, October.
    5. Steve O'Hagan & Joshua Knowles & Douglas B Kell, 2012. "Exploiting Genomic Knowledge in Optimising Molecular Breeding Programmes: Algorithms from Evolutionary Computing," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-14, November.
    6. Bogna J. Smug & Krzysztof Szczepaniak & Eduardo P. C. Rocha & Stanislaw Dunin-Horkawicz & Rafał J. Mostowy, 2023. "Ongoing shuffling of protein fragments diversifies core viral functions linked to interactions with bacterial hosts," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Briscoe, Gerard & De Wilde, Philippe, 2011. "Physical complexity of variable length symbolic sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3732-3741.
    8. Andrea Maesani & Pradeep Ruben Fernando & Dario Floreano, 2014. "Artificial Evolution by Viability Rather than Competition," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.
    9. Hellweger, Ferdi L. & Bucci, Vanni, 2009. "A bunch of tiny individuals—Individual-based modeling for microbes," Ecological Modelling, Elsevier, vol. 220(1), pages 8-22.
    10. Tracy Chih-Ting Koubkova-Yu & Jung-Chi Chao & Jun-Yi Leu, 2018. "Heterologous Hsp90 promotes phenotypic diversity through network evolution," PLOS Biology, Public Library of Science, vol. 16(11), pages 1-29, November.
    11. Miguel A Fortuna & Luis Zaman & Charles Ofria & Andreas Wagner, 2017. "The genotype-phenotype map of an evolving digital organism," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-20, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:423:y:2003:i:6936:d:10.1038_nature01568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.