IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v17y2010i5p335-341.html
   My bibliography  Save this article

Design speeds and acceleration characteristics of bicycle traffic for use in planning, design and appraisal

Author

Listed:
  • Parkin, John
  • Rotheram, Jonathon

Abstract

This paper reports the results of a study of a cohort of cyclists to determine their speed and acceleration characteristics relative to gradient and other influencing factors in order to supply data for planners, designers and appraisers of cycle infrastructure schemes. A cohort of everyday cyclists was supplied with a global positioning system device and a heart rate monitor and asked to collect data from their journeys in Leeds, UK. The analysis determines the cyclists' speeds and accelerations at every point on their journey and elevation data, corroborated by mapping information, was used to determine the gradient. Two linear regression models of speed and acceleration were estimated and show that the influence of a downhill gradient on speed is less pronounced than the effect of an uphill gradient. The results indicate an eighty-fifth percentile speed on the flat of 22Â kph, and for a downhill gradient of 3%, 25Â kph. The power required to cycle has been estimated and shows that cyclists deliver around 150Â W on the flat, but that this rises to around 250Â W climbing hills. Mean acceleration on the flat is 0.231Â m/s2 and the average power output over the acceleration phase, which is of mean duration 26Â s, is approximately 120Â W. Air resistance accounts for approximately 70% of the resistive force when cycling at design speed. It is recommended that designers adopt 25Â kph as a design speed for gradients less than 3%, but that consideration should be given to design speeds of up to 35Â kph for steeper gradients. Free-flow speeds in this range should be used when modelling mode and route choices and in benefit appraisal.

Suggested Citation

  • Parkin, John & Rotheram, Jonathon, 2010. "Design speeds and acceleration characteristics of bicycle traffic for use in planning, design and appraisal," Transport Policy, Elsevier, vol. 17(5), pages 335-341, September.
  • Handle: RePEc:eee:trapol:v:17:y:2010:i:5:p:335-341
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967-070X(10)00039-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Parkin & Mark Wardman & Matthew Page, 2008. "Estimation of the determinants of bicycle mode share for the journey to work using census data," Transportation, Springer, vol. 35(1), pages 93-109, January.
    2. Wardman, Mark & Tight, Miles & Page, Matthew, 2007. "Factors influencing the propensity to cycle to work," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 339-350, May.
    3. Fajans, Joel & Curry, Melanie, 2001. "Why Bicyclists Hate Stop Signs," University of California Transportation Center, Working Papers qt39h8k0x9, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan P. Romero & Jose L. Moura & Angel Ibeas & Borja Alonso, 2015. "A simulation tool for bicycle sharing systems in multimodal networks," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(6), pages 646-663, August.
    2. Stefan Flügel & Nina Hulleberg & Aslak Fyhri & Christian Weber & Gretar Ævarsson, 2019. "Empirical speed models for cycling in the Oslo road network," Transportation, Springer, vol. 46(4), pages 1395-1419, August.
    3. Zhang, Shuichao & Ren, Gang & Yang, Renfa, 2013. "Simulation model of speed–density characteristics for mixed bicycle flow—Comparison between cellular automata model and gas dynamics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5110-5118.
    4. Matteo della Mura & Serena Failla & Nicolò Gori & Alfonso Micucci & Filippo Paganelli, 2022. "E-Scooter Presence in Urban Areas: Are Consistent Rules, Paying Attention and Smooth Infrastructure Enough for Safety?," Sustainability, MDPI, vol. 14(21), pages 1-36, November.
    5. Lundberg, Benjamin & Weber, Joe, 2014. "Non-motorized transport and university populations: an analysis of connectivity and network perceptions," Journal of Transport Geography, Elsevier, vol. 39(C), pages 165-178.
    6. Khashayar Kazemzadeh & Aliaksei Laureshyn & Lena Winslott Hiselius & Enrico Ronchi, 2020. "Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature," Sustainability, MDPI, vol. 12(7), pages 1-30, April.
    7. Petter Arnesen & Olav Kåre Malmin & Erlend Dahl, 2020. "A forward Markov model for predicting bicycle speed," Transportation, Springer, vol. 47(5), pages 2415-2437, October.
    8. Frauke Behrendt & Sally Cairns & David Raffo & Ian Philips, 2021. "Impact of E-Bikes on Cycling in Hilly Areas: Participants’ Experience of Electrically-Assisted Cycling in a UK Study," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    9. Ray Pritchard, 2018. "Revealed Preference Methods for Studying Bicycle Route Choice—A Systematic Review," IJERPH, MDPI, vol. 15(3), pages 1-30, March.
    10. Erik Stigell & Peter Schantz, 2015. "Active Commuting Behaviors in a Nordic Metropolitan Setting in Relation to Modality, Gender, and Health Recommendations," IJERPH, MDPI, vol. 12(12), pages 1-23, December.
    11. Grigoropoulos, Georgios & Leonhardt, Axel & Kaths, Heather & Junghans, Marek & Baier, Michael M. & Busch, Fritz, 2022. "Traffic flow at signalized intersections with large volumes of bicycle traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 464-483.
    12. Alexander Bigazzi & Robin Lindsey, 2019. "A utility-based bicycle speed choice model with time and energy factors," Transportation, Springer, vol. 46(3), pages 995-1009, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    2. Downward, Paul & Rasciute, Simona, 2015. "Assessing the impact of the National Cycle Network and physical activity lifestyle on cycling behaviour in England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 425-437.
    3. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    4. Vandenbulcke, Grégory & Dujardin, Claire & Thomas, Isabelle & Geus, Bas de & Degraeuwe, Bart & Meeusen, Romain & Panis, Luc Int, 2011. "Cycle commuting in Belgium: Spatial determinants and 're-cycling' strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 118-137, February.
    5. Götschi, Thomas & Hintermann, Beat, 2013. "Valuation of public investment to support bicycling (FV-09)," Working papers 2013/02, Faculty of Business and Economics - University of Basel.
    6. Ehrgott, Matthias & Wang, Judith Y.T. & Raith, Andrea & van Houtte, Chris, 2012. "A bi-objective cyclist route choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 652-663.
    7. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    8. Acheampong, Ransford A. & Siiba, Alhassan, 2018. "Examining the determinants of utility bicycling using a socio-ecological framework: An exploratory study of the Tamale Metropolis in Northern Ghana," Journal of Transport Geography, Elsevier, vol. 69(C), pages 1-10.
    9. Wadud, Zia, 2014. "Cycling in a changed climate," Journal of Transport Geography, Elsevier, vol. 35(C), pages 12-20.
    10. Hema S Rayaprolu & Carlos Llorca & Rolf Moeckel, 2020. "Impact of bicycle highways on commuter mode choice: A scenario analysis," Environment and Planning B, , vol. 47(4), pages 662-677, May.
    11. Senes, Giulio & Rovelli, Roberto & Bertoni, Danilo & Arata, Laura & Fumagalli, Natalia & Toccolini, Alessandro, 2017. "Factors influencing greenways use: Definition of a method for estimation in the Italian context," Journal of Transport Geography, Elsevier, vol. 65(C), pages 175-187.
    12. Ruiz, Tomás & Bernabé, José C., 2014. "Measuring factors influencing valuation of nonmotorized improvement measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 195-211.
    13. Lanzendorf, Martin & Busch-Geertsema, Annika, 2014. "The cycling boom in large German cities—Empirical evidence for successful cycling campaigns," Transport Policy, Elsevier, vol. 36(C), pages 26-33.
    14. Nkurunziza, Alphonse & Zuidgeest, Mark & Brussel, Mark & Van Maarseveen, Martin, 2012. "Examining the potential for modal change: Motivators and barriers for bicycle commuting in Dar-es-Salaam," Transport Policy, Elsevier, vol. 24(C), pages 249-259.
    15. Pengjun Zhao, 2014. "The Impact of the Built Environment on Bicycle Commuting: Evidence from Beijing," Urban Studies, Urban Studies Journal Limited, vol. 51(5), pages 1019-1037, April.
    16. Verma, Meghna & Rahul, T.M. & Vinayak, Pragun & Verma, Ashish, 2018. "Influence of childhood and adulthood attitudinal perceptions on bicycle usage in the Bangalore city," Journal of Transport Geography, Elsevier, vol. 72(C), pages 94-105.
    17. Raffler, Clemens & Brezina, Tadej & Emberger, Günter, 2019. "Cycling investment expedience: Energy expenditure based Cost-Path Analysis of national census bicycle commuting data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 360-373.
    18. Chatterjee, Kiron & Sherwin, Henrietta & Jain, Juliet, 2013. "Triggers for changes in cycling: the role of life events and modifications to the external environment," Journal of Transport Geography, Elsevier, vol. 30(C), pages 183-193.
    19. Ralph Buehler & John Pucher, 2012. "Cycling to work in 90 large American cities: new evidence on the role of bike paths and lanes," Transportation, Springer, vol. 39(2), pages 409-432, March.
    20. José Castillo-Manzano & Antonio Sánchez-Braza, 2013. "Managing a smart bicycle system when demand outstrips supply: the case of the university community in Seville," Transportation, Springer, vol. 40(2), pages 459-477, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:17:y:2010:i:5:p:335-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.