IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v38y2015i6p646-663.html
   My bibliography  Save this article

A simulation tool for bicycle sharing systems in multimodal networks

Author

Listed:
  • Juan P. Romero
  • Jose L. Moura
  • Angel Ibeas
  • Borja Alonso

Abstract

This paper presents a methodology for modelling an urban transport system, integrating public bicycles in a multi-modal network. A bike cost function that reproduces the effect of slopes on cycling speeds is proposed. Also, the effect of traffic levels on the attractiveness of cycling routes is taken into account. The model applies the modal split and network assignment phases in a multimodal network with different classes of users. It has been verified over a test network and then validated by applying it to a real case in the city of Santander in Spain. The results obtained make this model a useful decision-making tool to encourage the use of the public bicycle from a sustainable development point of view.

Suggested Citation

  • Juan P. Romero & Jose L. Moura & Angel Ibeas & Borja Alonso, 2015. "A simulation tool for bicycle sharing systems in multimodal networks," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(6), pages 646-663, August.
  • Handle: RePEc:taf:transp:v:38:y:2015:i:6:p:646-663
    DOI: 10.1080/03081060.2015.1048946
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2015.1048946
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2015.1048946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdulaal, Mustafa & LeBlanc, Larry J., 1979. "Continuous equilibrium network design models," Transportation Research Part B: Methodological, Elsevier, vol. 13(1), pages 19-32, March.
    2. Wang, Rui, 2011. "Autos, transit and bicycles: Comparing the costs in large Chinese cities," Transport Policy, Elsevier, vol. 18(1), pages 139-146, January.
    3. Parkin, John & Rotheram, Jonathon, 2010. "Design speeds and acceleration characteristics of bicycle traffic for use in planning, design and appraisal," Transport Policy, Elsevier, vol. 17(5), pages 335-341, September.
    4. Tilahun, Nebiyou Y. & Levinson, David M. & Krizek, Kevin J., 2007. "Trails, lanes, or traffic: Valuing bicycle facilities with an adaptive stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 287-301, May.
    5. Joaquín de Cea & Enrique Fernández, 1993. "Transit Assignment for Congested Public Transport Systems: An Equilibrium Model," Transportation Science, INFORMS, vol. 27(2), pages 133-147, May.
    6. Nebiyou Tilahun & Kevin Krizek & David Levinson, 2007. "Trails, Lanes, or Traffic: Value of Different Bicycle Facilities Using Adaptive Stated-Preference Survey," Working Papers 200701, University of Minnesota: Nexus Research Group.
    7. Zhang, Hua & Shaheen, Susan PhD & Chen, Xingpeng, 2013. "Bicycle Evolution in China: From the 1900s to the Present," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt05k9k6b6, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lundberg, Benjamin & Weber, Joe, 2014. "Non-motorized transport and university populations: an analysis of connectivity and network perceptions," Journal of Transport Geography, Elsevier, vol. 39(C), pages 165-178.
    2. Khashayar Kazemzadeh & Aliaksei Laureshyn & Lena Winslott Hiselius & Enrico Ronchi, 2020. "Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature," Sustainability, MDPI, vol. 12(7), pages 1-30, April.
    3. Downward, Paul & Rasciute, Simona, 2015. "Assessing the impact of the National Cycle Network and physical activity lifestyle on cycling behaviour in England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 425-437.
    4. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    5. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    6. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part I. Macro-scale analysis of literature and integrative synthesis of empirical evidence from applied economics, experimental psychology and neuroimag," Journal of choice modelling, Elsevier, vol. 41(C).
    7. Lei Kang & Jon Fricker, 2013. "Bicyclist commuters’ choice of on-street versus off-street route segments," Transportation, Springer, vol. 40(5), pages 887-902, September.
    8. McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
    9. Wang, Chih-Hao & Akar, Gulsah & Guldmann, Jean-Michel, 2015. "Do your neighbors affect your bicycling choice? A spatial probit model for bicycling to The Ohio State University," Journal of Transport Geography, Elsevier, vol. 42(C), pages 122-130.
    10. Macdonald, Elizabeth & Sanders, Rebecca & Supawanich, Paul, 2008. "The Effects of Transportation Corridors' Roadside Design Features on User Behavior and Safety, and Their Contributions to Health, Environmental Quality, and Community Economic Vitality: a Literature R," University of California Transportation Center, Working Papers qt12047015, University of California Transportation Center.
    11. Jessica Schoner & David Levinson, 2014. "The missing link: bicycle infrastructure networks and ridership in 74 US cities," Transportation, Springer, vol. 41(6), pages 1187-1204, November.
    12. Kamargianni, Maria, 2015. "Investigating next generation's cycling ridership to promote sustainable mobility in different types of cities," Research in Transportation Economics, Elsevier, vol. 53(C), pages 45-55.
    13. Ruiz, Tomás & Bernabé, José C., 2014. "Measuring factors influencing valuation of nonmotorized improvement measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 195-211.
    14. Miroslav Vasilev & Ray Pritchard & Thomas Jonsson, 2018. "Trialing a Road Lane to Bicycle Path Redesign—Changes in Travel Behavior with a Focus on Users’ Route and Mode Choice," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    15. Alistair Sheldrick & James Evans & Gabriele Schliwa, 2017. "Policy learning and sustainable urban transitions: Mobilising Berlin’s cycling renaissance," Urban Studies, Urban Studies Journal Limited, vol. 54(12), pages 2739-2762, September.
    16. Björklund, Gunilla & Isacsson, Gunnar, 2013. "Forecasting the impact of infrastructure on Swedish commuters’ cycling behaviour," Working papers in Transport Economics 2013:36, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    17. Nkurunziza, Alphonse & Zuidgeest, Mark & Brussel, Mark & Van Maarseveen, Martin, 2012. "Examining the potential for modal change: Motivators and barriers for bicycle commuting in Dar-es-Salaam," Transport Policy, Elsevier, vol. 24(C), pages 249-259.
    18. José Castillo-Manzano & Antonio Sánchez-Braza, 2013. "Managing a smart bicycle system when demand outstrips supply: the case of the university community in Seville," Transportation, Springer, vol. 40(2), pages 459-477, February.
    19. Enrique Fernández L., J. & de Cea Ch., Joaquin & Malbran, R. Henry, 2008. "Demand responsive urban public transport system design: Methodology and application," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(7), pages 951-972, August.
    20. Milad Haghani & Michiel C. J. Bliemer & John M. Rose & Harmen Oppewal & Emily Lancsar, 2021. "Hypothetical bias in stated choice experiments: Part I. Integrative synthesis of empirical evidence and conceptualisation of external validity," Papers 2102.02940, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:38:y:2015:i:6:p:646-663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.