IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v160y2025icp1-14.html
   My bibliography  Save this article

Decarbonization costs for the Swedish heavy-duty road fleet: Circular economy insights on electric truck batteries

Author

Listed:
  • Parviziomran, Elmira
  • Bergqvist, Rickard

Abstract

This study analyzes decarbonization costs for the Swedish heavy-duty road fleet under five scenarios, one taken from the EUCalc model as a reference scenario and four others driven by interviews: a high-speed transition with 100% battery electric vehicles (BEVs) across all distances; a high-speed transition with BEVs taking 100% of the market in local and regional distances and 40% in long distances, with the remaining 60% being fuel cell vehicles (FCVs) by 2050; a low-speed transition with BEVs market share increasing by 15% every five years, starting at 10% from 2025 for local and 2030 for regional and long distances; and a low-speed transition similar to the previous scenario, but with 60% of the electrified long-distance fleet to be FCVs. The system's expenses are then calculated through numerical modeling. The study links research on the costs of sustainability transition to a circular economy by analyzing the effect of charging range and temperature on battery degradation for BEVs and their impact on the batteries' valorization. In full electrification scenarios, despite lower operating expenses, the system incurs a higher total cost because of higher investment expenses. Charging–discharging pattern and temperature impact the remaining capacity, and therefore salvage value, of end-of-life batteries.

Suggested Citation

  • Parviziomran, Elmira & Bergqvist, Rickard, 2025. "Decarbonization costs for the Swedish heavy-duty road fleet: Circular economy insights on electric truck batteries," Transport Policy, Elsevier, vol. 160(C), pages 1-14.
  • Handle: RePEc:eee:trapol:v:160:y:2025:i:c:p:1-14
    DOI: 10.1016/j.tranpol.2024.10.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X24003226
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.10.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:160:y:2025:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.