IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v309y2022i2d10.1007_s10479-020-03813-3.html
   My bibliography  Save this article

A multi-objective distributionally robust model for sustainable last mile relief network design problem

Author

Listed:
  • Peiyu Zhang

    (Hebei University)

  • Yankui Liu

    (Hebei University)

  • Guoqing Yang

    (Hebei University
    University of Windsor)

  • Guoqing Zhang

    (University of Windsor)

Abstract

Natural disasters not only inflict massive life and economic losses but also result in psychological damage to survivors, at times even causing social unrest. It is necessary to design a sustainable last mile relief network for distributing relief supplies regarding social factors, disaster relief efficiency as well as the economic cost of three perspectives in terms of sustainability. We establish a multi-objective distributionally robust optimization model for a sustainable last mile relief network problem that maximizes the equitable distribution of relief supplies and simultaneously minimizes the transportation time and operation cost. Under the partial probability information of uncertainties, such as the disaster situation, transportation time, freight, road capacity, and demand, we characterize the uncertain variables in an ambiguity set incorporating the bounds, means and the mean absolute deviations. Then, the bounds on the objective values and the safe approximations of the chance constraints are deduced under the ambiguity sets. Based on a revised multi-choice goal programming approach, we obtain a computationally tractable framework of the multi-objective model. To verify the effectiveness of the model and methods, a case study of the Banten tsunami is illustrated. The results demonstrate our proposed model can obtain a trade-off between the equitability, timeliness and economics for relief distribution in a relief network.

Suggested Citation

  • Peiyu Zhang & Yankui Liu & Guoqing Yang & Guoqing Zhang, 2022. "A multi-objective distributionally robust model for sustainable last mile relief network design problem," Annals of Operations Research, Springer, vol. 309(2), pages 689-730, February.
  • Handle: RePEc:spr:annopr:v:309:y:2022:i:2:d:10.1007_s10479-020-03813-3
    DOI: 10.1007/s10479-020-03813-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03813-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03813-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    2. Linet Özdamar & Ediz Ekinci & Beste Küçükyazici, 2004. "Emergency Logistics Planning in Natural Disasters," Annals of Operations Research, Springer, vol. 129(1), pages 217-245, July.
    3. Ransikarbum, Kasin & Mason, Scott J., 2016. "Goal programming-based post-disaster decision making for integrated relief distribution and early-stage network restoration," International Journal of Production Economics, Elsevier, vol. 182(C), pages 324-341.
    4. Akbari, Vahid & Salman, F. Sibel, 2017. "Multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity," European Journal of Operational Research, Elsevier, vol. 257(2), pages 625-640.
    5. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    6. Charbel José Chiappetta Jabbour & Vinicius Amorim Sobreiro & Ana Beatriz Lopes de Sousa Jabbour & Lucila Maria Souza Campos & Enzo Barberio Mariano & Douglas William Scott Renwick, 2019. "An analysis of the literature on humanitarian logistics and supply chain management: paving the way for future studies," Annals of Operations Research, Springer, vol. 283(1), pages 289-307, December.
    7. Laura Laguna-Salvadó & Matthieu Lauras & Uche Okongwu & Tina Comes, 2019. "A multicriteria Master Planning DSS for a sustainable humanitarian supply chain," Annals of Operations Research, Springer, vol. 283(1), pages 1303-1343, December.
    8. Cintia Machado de Oliveira & Renata Albergaria De Mello Bandeira & George Vasconcelos Goes & Daniel Neves Schmitz Gonçalves & Márcio De Almeida D’Agosto, 2017. "Sustainable Vehicles-Based Alternatives in Last Mile Distribution of Urban Freight Transport: A Systematic Literature Review," Sustainability, MDPI, vol. 9(8), pages 1-15, July.
    9. Harpreet Kaur & Surya Prakash Singh, 2019. "Sustainable procurement and logistics for disaster resilient supply chain," Annals of Operations Research, Springer, vol. 283(1), pages 309-354, December.
    10. Tzeng, Gwo-Hshiung & Cheng, Hsin-Jung & Huang, Tsung Dow, 2007. "Multi-objective optimal planning for designing relief delivery systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 673-686, November.
    11. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    12. Huang, Michael & Smilowitz, Karen & Balcik, Burcu, 2012. "Models for relief routing: Equity, efficiency and efficacy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 2-18.
    13. Shivam Gupta & Nezih Altay & Zongwei Luo, 2019. "Big data in humanitarian supply chain management: a review and further research directions," Annals of Operations Research, Springer, vol. 283(1), pages 1153-1173, December.
    14. Ouhimmou, Mustapha & Nourelfath, Mustapha & Bouchard, Mathieu & Bricha, Naji, 2019. "Design of robust distribution network under demand uncertainty: A case study in the pulp and paper," International Journal of Production Economics, Elsevier, vol. 218(C), pages 96-105.
    15. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    16. Fahimnia, Behnam & Jabbarzadeh, Armin & Ghavamifar, Ali & Bell, Michael, 2017. "Supply chain design for efficient and effective blood supply in disasters," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 700-709.
    17. Kyle H. Goldschmidt & Sameer Kumar, 2019. "Reducing the cost of humanitarian operations through disaster preparation and preparedness," Annals of Operations Research, Springer, vol. 283(1), pages 1139-1152, December.
    18. Amiya K. Chakravarty, 2014. "Humanitarian Relief Chain," Springer Texts in Business and Economics, in: Supply Chain Transformation, edition 127, chapter 8, pages 237-272, Springer.
    19. Balcik, Burcu & Beamon, Benita M. & Krejci, Caroline C. & Muramatsu, Kyle M. & Ramirez, Magaly, 2010. "Coordination in humanitarian relief chains: Practices, challenges and opportunities," International Journal of Production Economics, Elsevier, vol. 126(1), pages 22-34, July.
    20. Rameshwar Dubey & Angappa Gunasekaran & Thanos Papadopoulos, 2019. "Disaster relief operations: past, present and future," Annals of Operations Research, Springer, vol. 283(1), pages 1-8, December.
    21. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    22. Wilfredo Yushimito & Miguel Jaller & Satish Ukkusuri, 2012. "A Voronoi-Based Heuristic Algorithm for Locating Distribution Centers in Disasters," Networks and Spatial Economics, Springer, vol. 12(1), pages 21-39, March.
    23. Najafi, Mehdi & Eshghi, Kourosh & Dullaert, Wout, 2013. "A multi-objective robust optimization model for logistics planning in the earthquake response phase," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 217-249.
    24. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    25. A. Charnes & W. W. Cooper, 1957. "Management Models and Industrial Applications of Linear Programming," Management Science, INFORMS, vol. 4(1), pages 38-91, October.
    26. Chakravarty, Amiya K., 2014. "Humanitarian relief chain: Rapid response under uncertainty," International Journal of Production Economics, Elsevier, vol. 151(C), pages 146-157.
    27. Tofighi, S. & Torabi, S.A. & Mansouri, S.A., 2016. "Humanitarian logistics network design under mixed uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 239-250.
    28. Li, Lingfeng & Jin, Mingzhou & Zhang, Li, 2011. "Sheltering network planning and management with a case in the Gulf Coast region," International Journal of Production Economics, Elsevier, vol. 131(2), pages 431-440, June.
    29. Tao Yao & Supreet Mandala & Byung Chung, 2009. "Evacuation Transportation Planning Under Uncertainty: A Robust Optimization Approach," Networks and Spatial Economics, Springer, vol. 9(2), pages 171-189, June.
    30. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    31. Rodriguez Uria, M. Victoria & Caballero, Rafael & Ruiz, Francisco & Romero, Carlos, 2002. "Meta-goal programming," European Journal of Operational Research, Elsevier, vol. 136(2), pages 422-429, January.
    32. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    33. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Roubaud, David & Fosso Wamba, Samuel & Giannakis, Mihalis & Foropon, Cyril, 2019. "Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain," International Journal of Production Economics, Elsevier, vol. 210(C), pages 120-136.
    34. Sheu, Jiuh-Biing, 2014. "Post-disaster relief–service centralized logistics distribution with survivor resilience maximization," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 288-314.
    35. Azrah Anparasan & Miguel Lejeune, 2019. "Resource deployment and donation allocation for epidemic outbreaks," Annals of Operations Research, Springer, vol. 283(1), pages 9-32, December.
    36. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    37. Saadatseresht, Mohammad & Mansourian, Ali & Taleai, Mohammad, 2009. "Evacuation planning using multiobjective evolutionary optimization approach," European Journal of Operational Research, Elsevier, vol. 198(1), pages 305-314, October.
    38. Chang, Ching-Ter, 2007. "Multi-choice goal programming," Omega, Elsevier, vol. 35(4), pages 389-396, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Liu, Wei & Zhang, Fangni & Xu, Gangyan, 2024. "A risk-averse distributionally robust optimisation approach for drone-supported relief facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    2. Lin Chen & Ting Dong & Jin Peng & Dan Ralescu, 2023. "Uncertainty Analysis and Optimization Modeling with Application to Supply Chain Management: A Systematic Review," Mathematics, MDPI, vol. 11(11), pages 1-45, May.
    3. Wang, Duo & Yang, Kai & Yuen, Kum Fai & Yang, Lixing & Dong, Jianjun, 2024. "Hybrid risk-averse location-inventory-allocation with secondary disaster considerations in disaster relief logistics: A distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    4. Wang, Duo & Yang, Kai & Yang, Lixing & Dong, Jianjun, 2023. "Two-stage distributionally robust optimization for disaster relief logistics under option contract and demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    2. Yanbin Chang & Yongjia Song & Burak Eksioglu, 2022. "A stochastic look-ahead approach for hurricane relief logistics operations planning under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 1231-1263, December.
    3. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    4. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    5. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    6. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    7. Hasti Seraji & Reza Tavakkoli-Moghaddam & Sobhan Asian & Harpreet Kaur, 2022. "An integrative location-allocation model for humanitarian logistics with distributive injustice and dissatisfaction under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 211-257, December.
    8. Rameshwar Dubey & David J. Bryde & Cyril Foropon & Gary Graham & Mihalis Giannakis & Deepa Bhatt Mishra, 2022. "Agility in humanitarian supply chain: an organizational information processing perspective and relational view," Annals of Operations Research, Springer, vol. 319(1), pages 559-579, December.
    9. Amir Jamali & Amirhossein Ranjbar & Jafar Heydari & Sina Nayeri, 2022. "A multi-objective stochastic programming model to configure a sustainable humanitarian logistics considering deprivation cost and patient severity," Annals of Operations Research, Springer, vol. 319(1), pages 1265-1300, December.
    10. Moddassir Khan Nayeem & Gyu M. Lee, 2021. "Robust Design of Relief Distribution Networks Considering Uncertainty," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    11. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    12. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Disaster preparedness in humanitarian logistics: A collaborative approach for resource management in floods," European Journal of Operational Research, Elsevier, vol. 264(3), pages 978-993.
    13. Akbarpour, Mina & Ali Torabi, S. & Ghavamifar, Ali, 2020. "Designing an integrated pharmaceutical relief chain network under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    14. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    15. Guo Fuli & Cyril Foropon & Ma Xin, 2022. "Reducing carbon emissions in humanitarian supply chain: the role of decision making and coordination," Annals of Operations Research, Springer, vol. 319(1), pages 355-377, December.
    16. Paula Camargo Fiorini & Charbel Jose Chiappetta Jabbour & Ana Beatriz Lopes de Sousa Jabbour & Gary Ramsden, 2022. "The human side of humanitarian supply chains: a research agenda and systematization framework," Annals of Operations Research, Springer, vol. 319(1), pages 911-936, December.
    17. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    18. Liu, Kanglin & Yang, Liu & Zhao, Yejia & Zhang, Zhi-Hai, 2023. "Multi-period stochastic programming for relief delivery considering evolving transportation network and temporary facility relocation/closure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    19. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    20. Sachin Modgil & Rohit Kumar Singh & Cyril Foropon, 2022. "Quality management in humanitarian operations and disaster relief management: a review and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 1045-1098, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:309:y:2022:i:2:d:10.1007_s10479-020-03813-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.