IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v186y2024ics1366554524001273.html
   My bibliography  Save this article

Quantification of truck accessibility in urban last-mile deliveries using GPS probe data

Author

Listed:
  • Choudhry, Arnav
  • Qian, Sean

Abstract

This study presents the Urban Freight Mobility Energy Productivity (UF-MEP), a novel metric that evaluates the performance of last-mile urban freight delivery systems. Incorporating factors like delivery frequency, operational costs, and energy intensity, UF-MEP uses a data-centric approach for estimations. We introduce a pipeline that derives truck activity from GPS data, enabling the calculation of accessible delivery opportunities and UF-MEP. The work emphasizes the importance of comprehensive data collection in less populated areas and the critical role of GPS and link speed data in isochrone generation. Applied to Philadelphia’s large-scale network, our methodology demonstrates decreasing UF-MEP with rising residential and industrial delivery frequencies, while an increase is seen with commercial deliveries. Operational costs and energy intensity negatively impact UF-MEP. Our study suggests the highest potential for UF-MEP improvement lies in enhancing energy efficiency for medium and heavy-duty vehicles.

Suggested Citation

  • Choudhry, Arnav & Qian, Sean, 2024. "Quantification of truck accessibility in urban last-mile deliveries using GPS probe data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:transe:v:186:y:2024:i:c:s1366554524001273
    DOI: 10.1016/j.tre.2024.103536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524001273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. Holguín-Veras, José & Amaya Leal, Johanna & Sanchez-Diaz, Ivan & Browne, Michael & Wojtowicz, Jeffrey, 2020. "State of the art and practice of urban freight management Part II: Financial approaches, logistics, and demand management," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 383-410.
    3. Khalili, Fatemeh Bagheri & Antunes, António Pais & Mohaymany, Afshin Shariat, 2020. "Evaluating interregional freight accessibility conditions through the combination of centrality and reliability measures," Journal of Transport Geography, Elsevier, vol. 83(C).
    4. Eric J. Miller, 2018. "Accessibility: measurement and application in transportation planning," Transport Reviews, Taylor & Francis Journals, vol. 38(5), pages 551-555, September.
    5. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    6. Muñoz-Villamizar, Andrés & Santos, Javier & Montoya-Torres, Jairo R. & Jaca, Carmen, 2018. "Using OEE to evaluate the effectiveness of urban freight transportation systems: A case study," International Journal of Production Economics, Elsevier, vol. 197(C), pages 232-242.
    7. Lai, Kee-hung & Ngai, E. W. T. & Cheng, T. C. E., 2002. "Measures for evaluating supply chain performance in transport logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(6), pages 439-456, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Willberg, Elias & Fink, Christoph & Toivonen, Tuuli, 2023. "The 15-minute city for all? – Measuring individual and temporal variations in walking accessibility," Journal of Transport Geography, Elsevier, vol. 106(C).
    2. Rayaprolu, Hema & Levinson, David, 2024. "Co-evolution of public transport access and ridership," Journal of Transport Geography, Elsevier, vol. 116(C).
    3. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    4. Ifrah Quais & Danish Ahmed Siddiqui, 2017. "Measuring the Performance of Logistics Industry in the Context of Karachi," Information Management and Business Review, AMH International, vol. 9(5), pages 24-34.
    5. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Lorenzo Barbieri & Roberto D’Autilia & Paola Marrone & Ilaria Montella, 2023. "Graph Representation of the 15-Minute City: A Comparison between Rome, London, and Paris," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    7. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    8. Shih-Lung Shaw, 2023. "Time geography in a hybrid physical–virtual world," Journal of Geographical Systems, Springer, vol. 25(3), pages 339-356, July.
    9. Wang, Jie & Zhang, Yangyi & Li, Shunlong & Xu, Wencheng & Jin, Yao, 2024. "Directed network-based connectivity probability evaluation for urban bridges," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    11. Spencer Leitch & Zhiyuan Wei, 2024. "Improving spatial access to healthcare facilities: an integrated approach with spatial analysis and optimization modeling," Annals of Operations Research, Springer, vol. 341(2), pages 1057-1074, October.
    12. Li, Aoyong & Huang, Yizhe & Axhausen, Kay W., 2020. "An approach to imputing destination activities for inclusion in measures of bicycle accessibility," Journal of Transport Geography, Elsevier, vol. 82(C).
    13. Alves d'Acampora, Bárbara Heliodora & Maraschin, Clarice & Taufemback, Cleiton Guollo, 2023. "Landscape ecology and urban spatial configuration: Exploring a methodological relationship. Application in Pelotas, Brazil," Ecological Modelling, Elsevier, vol. 486(C).
    14. Magdalena Mucowska, 2021. "Trends of Environmentally Sustainable Solutions of Urban Last-Mile Deliveries on the E-Commerce Market—A Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    15. Stefan Jovčić & Petr Průša, 2021. "A Hybrid MCDM Approach in Third-Party Logistics (3PL) Provider Selection," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    16. Elijah Knaap & Sergio Rey, 2024. "Segregated by design? Street network topological structure and the measurement of urban segregation," Environment and Planning B, , vol. 51(7), pages 1408-1429, September.
    17. Luís Alberto Godinho Coelho & Rui Manuel Mendes Mansidão, 2014. "Logistics Performance: a Theoretical Conceptual Model for Small and Medium Enterprises," CEFAGE-UE Working Papers 2014_12, University of Evora, CEFAGE-UE (Portugal).
    18. Pan, Huijun & Huang, Yu, 2024. "TOD typology and station area vibrancy: An interpretable machine learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    19. Ali Enes Dingil & Federico Rupi & Joerg Schweizer & Zaneta Stasiskiene & Kasra Aalipour, 2019. "The Role of Culture in Urban Travel Patterns: Quantitative Analyses of Urban Areas Based on Hofstede’s Culture Dimensions," Social Sciences, MDPI, vol. 8(8), pages 1-12, July.
    20. Chen, Dongxu & Lian, Feng & Yang, Zhongzhen, 2024. "Assessment of equilibrium accessibility for import/export containers in hub-and-spoke transport network: Impact of international land-sea trade corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:186:y:2024:i:c:s1366554524001273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.