IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v154y2021ics1366554521002143.html
   My bibliography  Save this article

Flexibility in strategic flight planning

Author

Listed:
  • Bolić, Tatjana
  • Castelli, Lorenzo
  • Corolli, Luca
  • Scaini, Giovanni

Abstract

A deterministic model that indicates flexibility of flights at the strategic level (up to 6 months ahead) taking into account changing airspace configurations and capacity is formulated. Flexibility is quantified by means of time windows (TWs). Flights complying with TWs guarantee that they will not impact negatively any other flight. Three variants of the model and three types of TWs are tested on a large-size data instance (the European network for an entire day of traffic). The model output specifies the constrained flights (i.e., with TWs shorter than the maximum size allowed for their definition), the constraining sector-hours and provides a list of saturated sector-hours. The meaning of each of the results is explored, across the three TW model variants, as well as the capability of the model variants to assure that capacity limits will not be exceeded. The criticality index, a measure of the sector-hour saturation, is introduced. This index can be used to identify areas for potential improvements. Sharing the information obtained from the TW model results at a strategic level can help both airlines and air navigation service providers (ANSPs) to improve the network status: airlines can decide to re-route heavily constrained flights (e.g., with one minute wide TWs), whereas ANSPs could decide to re-organise the capacity provision of the saturated airspace portions. The TW model can be re-run with the proposed changes, with the goal to assess the impact on both the individual stakeholders and the network. Thus, the model offers the measure of flight flexibility, and can be used as a tool to assess the impact of changes, helping in decision-making processes of airlines and ANSPs.

Suggested Citation

  • Bolić, Tatjana & Castelli, Lorenzo & Corolli, Luca & Scaini, Giovanni, 2021. "Flexibility in strategic flight planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:transe:v:154:y:2021:i:c:s1366554521002143
    DOI: 10.1016/j.tre.2021.102450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554521002143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Yan & Dalmau, Ramon & Melgosa, Marc & Montlaur, Adeline & Prats, Xavier, 2020. "A framework for collaborative air traffic flow management minimizing costs for airspace users: Enabling trajectory options and flexible pre-tactical delay management," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 229-255.
    2. Bolić, Tatjana & Castelli, Lorenzo & Corolli, Luca & Rigonat, Desirée, 2017. "Reducing ATFM delays through strategic flight planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 42-59.
    3. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline mitigation of propagated delays via schedule buffers: Theory and empirics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    4. Peter B. M. Vranas & Dimitris Bertsimas & Amedeo R. Odoni, 1994. "Dynamic Ground-Holding Policies for a Network of Airports," Transportation Science, INFORMS, vol. 28(4), pages 275-291, November.
    5. Dimitris Bertsimas & Guglielmo Lulli & Amedeo Odoni, 2011. "An Integer Optimization Approach to Large-Scale Air Traffic Flow Management," Operations Research, INFORMS, vol. 59(1), pages 211-227, February.
    6. Cynthia Barnhart & Dimitris Bertsimas & Constantine Caramanis & Douglas Fearing, 2012. "Equitable and Efficient Coordination in Traffic Flow Management," Transportation Science, INFORMS, vol. 46(2), pages 262-280, May.
    7. Ivanov, Nikola & Jovanović, Radosav & Fichert, Frank & Strauss, Arne & Starita, Stefano & Babić, Obrad & Pavlović, Goran, 2019. "Coordinated capacity and demand management in a redesigned Air Traffic Management value-chain," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 139-152.
    8. Luis Delgado & G'erald Gurtner & Tatjana Boli'c & Lorenzo Castelli, 2021. "Estimating economic severity of Air Traffic Flow Management regulations," Papers 2112.11263, arXiv.org.
    9. Eufrásio, Ana Beatriz R. & Eller, Rogéria A.G. & Oliveira, Alessandro V.M., 2021. "Are on-time performance statistics worthless? An empirical study of the flight scheduling strategies of Brazilian airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    10. Dimitris Bertsimas & Sarah Stock Patterson, 1998. "The Air Traffic Flow Management Problem with Enroute Capacities," Operations Research, INFORMS, vol. 46(3), pages 406-422, June.
    11. Shone, Rob & Glazebrook, Kevin & Zografos, Konstantinos G., 2021. "Applications of stochastic modeling in air traffic management: Methods, challenges and opportunities for solving air traffic problems under uncertainty," European Journal of Operational Research, Elsevier, vol. 292(1), pages 1-26.
    12. Peter B. Vranas & Dimitris J. Bertsimas & Amedeo R. Odoni, 1994. "The Multi-Airport Ground-Holding Problem in Air Traffic Control," Operations Research, INFORMS, vol. 42(2), pages 249-261, April.
    13. Guglielmo Lulli & Amedeo Odoni, 2007. "The European Air Traffic Flow Management Problem," Transportation Science, INFORMS, vol. 41(4), pages 431-443, November.
    14. Woo, Young-Bin & Moon, Ilkyeong, 2021. "Scenario-based stochastic programming for an airline-driven flight rescheduling problem under ground delay programs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    15. Alexander S. Estes & Michael O. Ball, 2020. "Equity and Strength in Stochastic Integer Programming Models for the Dynamic Single Airport Ground-Holding Problem," Transportation Science, INFORMS, vol. 54(4), pages 944-955, July.
    16. Stefano Starita & Arne K. Strauss & Xin Fei & Radosav Jovanović & Nikola Ivanov & Goran Pavlović & Frank Fichert, 2020. "Air Traffic Control Capacity Planning Under Demand and Capacity Provision Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 882-896, July.
    17. Wen, Xin & Ma, Hoi-Lam & Chung, Sai-Ho & Khan, Waqar Ahmed, 2020. "Robust airline crew scheduling with flight flying time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    18. Dimitris Bertsimas & Sarah Stock Patterson, 2000. "The Traffic Flow Management Rerouting Problem in Air Traffic Control: A Dynamic Network Flow Approach," Transportation Science, INFORMS, vol. 34(3), pages 239-255, August.
    19. Liu, Yulin & Liu, Yi & Hansen, Mark & Pozdnukhov, Alexey & Zhang, Danqing, 2019. "Using machine learning to analyze air traffic management actions: Ground delay program case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 80-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Xin & Chung, Sai-Ho & Ji, Ping & Sheu, Jiuh-Biing, 2022. "Individual scheduling approach for multi-class airline cabin crew with manpower requirement heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    2. Dalmau, Ramon & Gawinowski, Gilles & Anoraud, Camille, 2022. "Comparison of various temporal air traffic flow management models in critical scenarios," Journal of Air Transport Management, Elsevier, vol. 105(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yunxiang & Zhao, Yifei & Wu, Yexin, 2024. "Recent progress in air traffic flow management: A review," Journal of Air Transport Management, Elsevier, vol. 116(C).
    2. Guo, Yechenfeng & Hu, Minghua & Zou, Bo & Hansen, Mark & Zhang, Ying & Xie, Hua, 2022. "Air Traffic Flow Management Integrating Separation Management and Ground Holding: An Efficiency-Equity Bi-objective Perspective," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 394-423.
    3. Silvia Zaoli & Giovanni Scaini & Lorenzo Castelli, 2021. "Community Detection for Air Traffic Networks and Its Application in Strategic Flight Planning," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    4. Xu, Yan & Dalmau, Ramon & Melgosa, Marc & Montlaur, Adeline & Prats, Xavier, 2020. "A framework for collaborative air traffic flow management minimizing costs for airspace users: Enabling trajectory options and flexible pre-tactical delay management," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 229-255.
    5. Zhang, Qiuhan & Le, Meilong & Xu, Yan, 2021. "Collaborative delay management towards demand-capacity balancing within User Driven Prioritisation Process," Journal of Air Transport Management, Elsevier, vol. 91(C).
    6. Andreatta, Giovanni & Dell'Olmo, Paolo & Lulli, Guglielmo, 2011. "An aggregate stochastic programming model for air traffic flow management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 697-704, December.
    7. Diao, Xudong & Chen, Chun-Hsien, 2018. "A sequence model for air traffic flow management rerouting problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 15-30.
    8. Bolić, Tatjana & Castelli, Lorenzo & Corolli, Luca & Rigonat, Desirée, 2017. "Reducing ATFM delays through strategic flight planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 42-59.
    9. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part II: Stochastic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 167-177.
    10. Thomas W. M. Vossen & Michael O. Ball, 2006. "Slot Trading Opportunities in Collaborative Ground Delay Programs," Transportation Science, INFORMS, vol. 40(1), pages 29-43, February.
    11. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    12. Kammoun, Mohamed Ali & Rezg, Nidhal, 2018. "An efficient hybrid approach for resolving the aircraft routing and rescheduling problem," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 73-87.
    13. Luis Delgado & G'erald Gurtner & Tatjana Boli'c & Lorenzo Castelli, 2021. "Estimating economic severity of Air Traffic Flow Management regulations," Papers 2112.11263, arXiv.org.
    14. Ye, Qing Chuan & Zhang, Yingqian & Dekker, Rommert, 2017. "Fair task allocation in transportation," Omega, Elsevier, vol. 68(C), pages 1-16.
    15. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part I: Deterministic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 156-166.
    16. Dimitris Bertsimas & Shubham Gupta, 2016. "Fairness and Collaboration in Network Air Traffic Flow Management: An Optimization Approach," Transportation Science, INFORMS, vol. 50(1), pages 57-76, February.
    17. Churchill, Andrew M. & Lovell, David J., 2012. "Coordinated aviation network resource allocation under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 19-33.
    18. Dimitris Bertsimas & Guglielmo Lulli & Amedeo Odoni, 2011. "An Integer Optimization Approach to Large-Scale Air Traffic Flow Management," Operations Research, INFORMS, vol. 59(1), pages 211-227, February.
    19. Cynthia Barnhart & Dimitris Bertsimas & Constantine Caramanis & Douglas Fearing, 2012. "Equitable and Efficient Coordination in Traffic Flow Management," Transportation Science, INFORMS, vol. 46(2), pages 262-280, May.
    20. Pellegrini, Paola & Rodriguez, Joaquin, 2013. "Single European Sky and Single European Railway Area: A system level analysis of air and rail transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 64-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:154:y:2021:i:c:s1366554521002143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.