IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v58y2013icp106-118.html
   My bibliography  Save this article

On the morning commute problem with bottleneck congestion and parking space constraints

Author

Listed:
  • Yang, Hai
  • Liu, Wei
  • Wang, Xiaolei
  • Zhang, Xiaoning

Abstract

Morning commuters choose their departure times based on a combination of factors—the chances of running into bottleneck congestion, the likely schedule delays, and parking space availability. This study investigates the morning commute problem with both bottleneck congestion and parking space constraints. In particular, it considers the situation when some commuters have reserved parking spots while others have to compete for public ones on a first-come-first-served basis. Unlike the traditional pure bottleneck model, the rush-hour dynamic traffic pattern with a binding parking capacity constraint varies with the relative proportions of the two classes of commuters. It is found that an appropriate combination of reserved and unreserved parking spots can temporally relieve traffic congestion at the bottleneck and hence reduce the total system cost, because commuters without a reserved parking spot are compelled to leave home earlier in order to secure a public parking spot. System performance is quantified in terms of the relative proportions of the two classes of commuters and is compared with those in the extreme cases when all auto commuters have to compete for parking and when none of them have to compete for one.

Suggested Citation

  • Yang, Hai & Liu, Wei & Wang, Xiaolei & Zhang, Xiaoning, 2013. "On the morning commute problem with bottleneck congestion and parking space constraints," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 106-118.
  • Handle: RePEc:eee:transb:v:58:y:2013:i:c:p:106-118
    DOI: 10.1016/j.trb.2013.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261513001768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2013.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anderson, Simon P. & de Palma, Andre, 2004. "The economics of pricing parking," Journal of Urban Economics, Elsevier, vol. 55(1), pages 1-20, January.
    2. Arnott, Richard & Inci, Eren, 2010. "The stability of downtown parking and traffic congestion," Journal of Urban Economics, Elsevier, vol. 68(3), pages 260-276, November.
    3. An, Yonghong & Zhang, Zhixiang, 2012. "Congestion with heterogeneous commuters," Economic Modelling, Elsevier, vol. 29(3), pages 557-565.
    4. Kraus, Marvin, 2003. "A new look at the two-mode problem," Journal of Urban Economics, Elsevier, vol. 54(3), pages 511-530, November.
    5. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1991. "A temporal and spatial equilibrium analysis of commuter parking," Journal of Public Economics, Elsevier, vol. 45(3), pages 301-335, August.
    6. Liu, Yang & Nie, Yu (Marco), 2011. "Morning commute problem considering route choice, user heterogeneity and alternative system optima," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 619-642.
    7. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    8. Glazer, Amihai & Niskanen, Esko, 1992. "Parking fees and congestion," Regional Science and Urban Economics, Elsevier, vol. 22(1), pages 123-132, March.
    9. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
    10. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    11. Yang, Hai & Meng, Qiang, 1998. "Departure time, route choice and congestion toll in a queuing network with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 32(4), pages 247-260, May.
    12. Arnott, Richard & Rowse, John, 2009. "Downtown parking in auto city," Regional Science and Urban Economics, Elsevier, vol. 39(1), pages 1-14, January.
    13. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    14. Qian, Zhen (Sean) & Xiao, Feng (Evan) & Zhang, H.M., 2011. "The economics of parking provision for the morning commute," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 861-879, November.
    15. Bifulco, Gennaro Nicola, 1993. "A stochastic user equilibrium assignment model for the evaluation of parking policies," European Journal of Operational Research, Elsevier, vol. 71(2), pages 269-287, December.
    16. Zhang, Xiaoning & Huang, Hai-Jun & Zhang, H.M., 2008. "Integrated daily commuting patterns and optimal road tolls and parking fees in a linear city," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 38-56, January.
    17. Xiao, Feng & Shen, Wei & Michael Zhang, H., 2012. "The morning commute under flat toll and tactical waiting," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1346-1359.
    18. Yao, Tao & Wei, Mike Mingcheng & Zhang, Bo & Friesz, Terry, 2012. "Congestion derivatives for a traffic bottleneck with heterogeneous commuters," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1454-1473.
    19. van den Berg, Vincent & Verhoef, Erik T., 2011. "Congestion tolling in the bottleneck model with heterogeneous values of time," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 60-78, January.
    20. Laih, Chen-Hsiu, 1994. "Queueing at a bottleneck with single- and multi-step tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(3), pages 197-208, May.
    21. Yao, Tao & Friesz, Terry L. & Wei, Mike Mingcheng & Yin, Yafeng, 2010. "Congestion derivatives for a traffic bottleneck," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1149-1165, December.
    22. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun, 2011. "Improving travel efficiency by parking permits distribution and trading," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1018-1034, August.
    23. Yang, Hai & Hai-Jun, Huang, 1997. "Analysis of the time-varying pricing of a bottleneck with elastic demand using optimal control theory," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 425-440, November.
    24. Doan, Kien & Ukkusuri, Satish & Han, Lanshan, 2011. "On the existence of pricing strategies in the discrete time heterogeneous single bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1483-1500.
    25. Yang, Hai & Wang, Xiaolei, 2011. "Managing network mobility with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 580-594, March.
    26. Verhoef, Erik & Nijkamp, Peter & Rietveld, Piet, 1995. "The economics of regulatory parking policies: The (IM)possibilities of parking policies in traffic regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(2), pages 141-156, March.
    27. Kraus, Marvin & Yoshida, Yuichiro, 2002. "The Commuter's Time-of-Use Decision and Optimal Pricing and Service in Urban Mass Transit," Journal of Urban Economics, Elsevier, vol. 51(1), pages 170-195, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    2. Takayama, Yuki & Kuwahara, Masao, 2016. "Scheduling preferences, parking competition, and bottleneck congestion: A model of trip timing and parking location choices by heterogeneous commuters," MPRA Paper 68938, University Library of Munich, Germany.
    3. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    4. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    5. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun, 2011. "Improving travel efficiency by parking permits distribution and trading," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1018-1034, August.
    6. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2014. "Bottleneck model revisited: An activity-based perspective," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 262-287.
    7. Liu, Wei & Zhang, Fangni & Yang, Hai, 2017. "Modeling and managing morning commute with both household and individual travels," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 227-247.
    8. Inci, Eren, 2015. "A review of the economics of parking," Economics of Transportation, Elsevier, vol. 4(1), pages 50-63.
    9. Gu, Ziyuan & Safarighouzhdi, Farshid & Saberi, Meead & Rashidi, Taha H., 2021. "A macro-micro approach to modeling parking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 220-244.
    10. Wang, Jing & Zhang, Xiaoning & Wang, Hua & Zhang, Michael, 2019. "Optimal parking supply in bi-modal transportation network considering transit scale economies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 207-229.
    11. Ling-Ling Xiao & Tian-Liang Liu & Hai-Jun Huang, 2021. "Tradable permit schemes for managing morning commute with carpool under parking space constraint," Transportation, Springer, vol. 48(4), pages 1563-1586, August.
    12. Chen, Jin-Yong & Jiang, Rui & Li, Xin-Gang & Hu, Mao-Bin & Jia, Bin & Gao, Zi-You, 2019. "Morning commute problem with queue-length-dependent bottleneck capacity," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 184-215.
    13. Tian, Li-Jun & Yang, Hai & Huang, Hai-Jun, 2013. "Tradable credit schemes for managing bottleneck congestion and modal split with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 1-13.
    14. Qian, Zhen (Sean) & Rajagopal, Ram, 2014. "Optimal occupancy-driven parking pricing under demand uncertainties and traveler heterogeneity: A stochastic control approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 144-165.
    15. Wang, Pengfei & Guan, Hongzhi & Liu, Peng, 2020. "Modeling and solving the optimal allocation-pricing of public parking resources problem in urban-scale network," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 74-98.
    16. Yang, Hai & Tang, Yili, 2018. "Managing rail transit peak-hour congestion with a fare-reward scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 122-136.
    17. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
    18. André de Palma & Mogens Fosgerau, 2011. "Dynamic Traffic Modeling," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 9, Edward Elgar Publishing.
    19. Lu, Xiao-Shan & Guo, Ren-Yong & Huang, Hai-Jun & Xu, Xiaoming & Chen, Jiajia, 2021. "Equilibrium analysis of parking for integrated daily commuting," Research in Transportation Economics, Elsevier, vol. 90(C).
    20. Lu, Xiao-Shan & Huang, Hai-Jun & Guo, Ren-Yong & Xiong, Fen, 2021. "Linear location-dependent parking fees and integrated daily commuting patterns with late arrival and early departure in a linear city," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 293-322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:58:y:2013:i:c:p:106-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.