IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v115y2018icp35-55.html
   My bibliography  Save this article

Hybridized encoding for evolutionary multi-objective optimization of air traffic network flow: A case study on China

Author

Listed:
  • Xiao, Mingming
  • Cai, Kaiquan
  • Abbass, Hussein A.

Abstract

This paper presents a novel hybridized indirect and direct encoding (HybrID) genetic algorithm for solving air traffic network flow optimization problems. A heuristic, which uses the Dijkstra algorithm for generating different types of shortest paths on a graph while controlling the weights on each arc, is proposed for selecting optimal flight routes based on current air traffic. A novel HybrID chromosome representation is employed along with the proposed heuristic and a genetic algorithm for optimization. Experiments on synthetic problems and real data of the Chinese airspace show the proposed method outperforms the direct encoding method on efficiency and efficacy metrics.

Suggested Citation

  • Xiao, Mingming & Cai, Kaiquan & Abbass, Hussein A., 2018. "Hybridized encoding for evolutionary multi-objective optimization of air traffic network flow: A case study on China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 35-55.
  • Handle: RePEc:eee:transe:v:115:y:2018:i:c:p:35-55
    DOI: 10.1016/j.tre.2018.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554517310049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2018.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, D. & Clinet, A. & Bayen, A.M., 2011. "A dual decomposition method for sector capacity constrained traffic flow optimization," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 880-902, July.
    2. Yu, Bin & Yang, Zhong-Zhen & Yao, Baozhen, 2009. "An improved ant colony optimization for vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 171-176, July.
    3. Dimitris Bertsimas & Guglielmo Lulli & Amedeo Odoni, 2011. "An Integer Optimization Approach to Large-Scale Air Traffic Flow Management," Operations Research, INFORMS, vol. 59(1), pages 211-227, February.
    4. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part I: Deterministic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 156-166.
    5. Britto, Rodrigo & Dresner, Martin & Voltes, Augusto, 2012. "The impact of flight delays on passenger demand and societal welfare," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 460-469.
    6. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part II: Stochastic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 167-177.
    7. Dimitris Bertsimas & Sarah Stock Patterson, 1998. "The Air Traffic Flow Management Problem with Enroute Capacities," Operations Research, INFORMS, vol. 46(3), pages 406-422, June.
    8. Thomas W. M. Vossen & Robert Hoffman & Avijit Mukherjee, 2012. "Air Traffic Flow Management," International Series in Operations Research & Management Science, in: Cynthia Barnhart & Barry Smith (ed.), Quantitative Problem Solving Methods in the Airline Industry, edition 127, chapter 0, pages 385-453, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    2. Li, Jiawei & Wen, Xiangxi & Wu, Minggong & Liu, Fei & Li, Shuangfeng, 2020. "Identification of key nodes and vital edges in aviation network based on minimum connected dominating set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    3. Chen, Yunxiang & Zhao, Yifei & Wu, Yexin, 2024. "Recent progress in air traffic flow management: A review," Journal of Air Transport Management, Elsevier, vol. 116(C).
    4. Jian Cao & Xihui Chen & Sisi Wu & Sanjay Kumar, 2021. "Evolving remanufacturing strategies in China: an evolutionary game theory perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14827-14853, October.
    5. Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diao, Xudong & Chen, Chun-Hsien, 2018. "A sequence model for air traffic flow management rerouting problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 15-30.
    2. Bongo, Miriam F. & Ocampo, Lanndon A., 2017. "A hybrid fuzzy MCDM approach for mitigating airport congestion: A case in Ninoy Aquino International Airport," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 1-16.
    3. James C. Jones & David J. Lovell & Michael O. Ball, 2018. "Stochastic Optimization Models for Transferring Delay Along Flight Trajectories to Reduce Fuel Usage," Transportation Science, INFORMS, vol. 52(1), pages 134-149, January.
    4. Miriam F. Bongo & Charlle L. Sy, 2024. "Can diverse and conflicting interests of multiple stakeholders be balanced?," Annals of Operations Research, Springer, vol. 339(3), pages 1813-1837, August.
    5. Zhang, Qiuhan & Le, Meilong & Xu, Yan, 2021. "Collaborative delay management towards demand-capacity balancing within User Driven Prioritisation Process," Journal of Air Transport Management, Elsevier, vol. 91(C).
    6. Dal Sasso, Veronica & Djeumou Fomeni, Franklin & Lulli, Guglielmo & Zografos, Konstantinos G., 2018. "Incorporating Stakeholders’ priorities and preferences in 4D trajectory optimization," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 594-609.
    7. Dal Sasso, Veronica & Djeumou Fomeni, Franklin & Lulli, Guglielmo & Zografos, Konstantinos G., 2019. "Planning efficient 4D trajectories in Air Traffic Flow Management," European Journal of Operational Research, Elsevier, vol. 276(2), pages 676-687.
    8. Sadeque Hamdan & Oualid Jouini & Ali Cheaitou & Zied Jemai & Tobias Andersson Granberg, 2023. "On the binary formulation of air traffic flow management problems," Annals of Operations Research, Springer, vol. 321(1), pages 267-279, February.
    9. Ivanov, Nikola & Netjasov, Fedja & Jovanović, Radosav & Starita, Stefano & Strauss, Arne, 2017. "Air Traffic Flow Management slot allocation to minimize propagated delay and improve airport slot adherence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 183-197.
    10. Kammoun, Mohamed Ali & Rezg, Nidhal, 2018. "An efficient hybrid approach for resolving the aircraft routing and rescheduling problem," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 73-87.
    11. Ghoneim, Ayman & Abbass, Hussein A., 2016. "A multiobjective distance separation methodology to determine sector-level minimum separation for safe air traffic scenarios," European Journal of Operational Research, Elsevier, vol. 253(1), pages 226-240.
    12. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part I: Deterministic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 156-166.
    13. Silvia Zaoli & Giovanni Scaini & Lorenzo Castelli, 2021. "Community Detection for Air Traffic Networks and Its Application in Strategic Flight Planning," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    14. Hamdan, Sadeque & Jouini, Oualid & Cheaitou, Ali & Jemai, Zied & Granberg, Tobias Andersson & Josefsson, Billy, 2022. "Air traffic flow management under emission policies: Analyzing the impact of sustainable aviation fuel and different carbon prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 14-40.
    15. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part II: Stochastic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 167-177.
    16. Ivanov, Nikola & Jovanović, Radosav & Fichert, Frank & Strauss, Arne & Starita, Stefano & Babić, Obrad & Pavlović, Goran, 2019. "Coordinated capacity and demand management in a redesigned Air Traffic Management value-chain," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 139-152.
    17. Pellegrini, Paola & Rodriguez, Joaquin, 2013. "Single European Sky and Single European Railway Area: A system level analysis of air and rail transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 64-86.
    18. Xu, Yan & Dalmau, Ramon & Melgosa, Marc & Montlaur, Adeline & Prats, Xavier, 2020. "A framework for collaborative air traffic flow management minimizing costs for airspace users: Enabling trajectory options and flexible pre-tactical delay management," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 229-255.
    19. Chen, J. & Chen, L. & Sun, D., 2017. "Air traffic flow management under uncertainty using chance-constrained optimization," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 124-141.
    20. Prot, D. & Rapine, C. & Constans, S. & Fondacci, R., 2014. "A 4D-sequencing approach for air traffic management," European Journal of Operational Research, Elsevier, vol. 237(2), pages 411-425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:115:y:2018:i:c:p:35-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.