IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v106y2017icp353-371.html
   My bibliography  Save this article

Dispatching policies for last-mile distribution with stochastic supply and demand

Author

Listed:
  • Cook, Robert A.
  • Lodree, Emmett J.

Abstract

Relief distribution has received considerable attention in the disaster operations management literature. However, the majority of this literature assumes that supply is always available. In reality, a significant portion of the materials that flow through the humanitarian relief chain are donations, which represent an uncertain supply source in terms of both quantity and timing. This paper investigates a two-stage relief chain consisting of a single staging area (SA) where donations arrive over time in uncertain quantities, which are periodically distributed to random numbers of disaster survivors located at a point of distribution (POD). A single vehicle travels back and forth between the SA and POD transporting relief supplies during a finite horizon. The goal of this study is to identify dispatching policies for the vehicle with the sole purpose of minimizing unsatisfied demand at the POD. To this end, we examine the effectiveness of two common-sense heuristic policies relative to the optimal dispatching policy, the latter of which is determined via stochastic dynamic programming. Our findings indicate that although continuously dispatching the vehicle between the SA and POD is not an optimal policy, it is either optimal or close to optimal in most situations.

Suggested Citation

  • Cook, Robert A. & Lodree, Emmett J., 2017. "Dispatching policies for last-mile distribution with stochastic supply and demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 353-371.
  • Handle: RePEc:eee:transe:v:106:y:2017:i:c:p:353-371
    DOI: 10.1016/j.tre.2017.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554517302296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2017.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linet Özdamar & Ediz Ekinci & Beste Küçükyazici, 2004. "Emergency Logistics Planning in Natural Disasters," Annals of Operations Research, Springer, vol. 129(1), pages 217-245, July.
    2. Manoj Vanajakumari & Subodha Kumar & Sushil Gupta, 2016. "An Integrated Logistic Model for Predictable Disasters," Production and Operations Management, Production and Operations Management Society, vol. 25(5), pages 791-811, May.
    3. Barbarosoglu, Gulay & Ozdamar, Linet & Cevik, Ahmet, 2002. "An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations," European Journal of Operational Research, Elsevier, vol. 140(1), pages 118-133, July.
    4. Huang, Michael & Smilowitz, Karen & Balcik, Burcu, 2012. "Models for relief routing: Equity, efficiency and efficacy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 2-18.
    5. Nilay Noyan & Burcu Balcik & Semih Atakan, 2016. "A Stochastic Optimization Model for Designing Last Mile Relief Networks," Transportation Science, INFORMS, vol. 50(3), pages 1092-1113, August.
    6. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    7. Fatih Mutlu & Sila Çetinkaya & James Bookbinder, 2010. "An analytical model for computing the optimal time-and-quantity-based policy for consolidated shipments," IISE Transactions, Taylor & Francis Journals, vol. 42(5), pages 367-377.
    8. Ahmadi, Morteza & Seifi, Abbas & Tootooni, Behnam, 2015. "A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 145-163.
    9. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    10. Rennemo, Sigrid Johansen & Rø, Kristina Fougner & Hvattum, Lars Magnus & Tirado, Gregorio, 2014. "A three-stage stochastic facility routing model for disaster response planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 116-135.
    11. Haghani, Ali & Oh, Sei-Chang, 1996. "Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(3), pages 231-250, May.
    12. Nagurney, Anna & Flores, Emilio Alvarez & Soylu, Ceren, 2016. "A Generalized Nash Equilibrium network model for post-disaster humanitarian relief," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 1-18.
    13. Olof Stenius & Ayşe Gönül Karaarslan & Johan Marklund & A. G. de Kok, 2016. "Exact Analysis of Divergent Inventory Systems with Time-Based Shipment Consolidation and Compound Poisson Demand," Operations Research, INFORMS, vol. 64(4), pages 906-921, August.
    14. Nguyen, Christine & Dessouky, Maged & Toriello, Alejandro, 2014. "Consolidation strategies for the delivery of perishable products," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 108-121.
    15. Çetinkaya, SIla & Bookbinder, James H., 2003. "Stochastic models for the dispatch of consolidated shipments," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 747-768, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irais Mora-Ochomogo & Marco Serrato & Jaime Mora-Vargas & Raha Akhavan-Tabatabaei, 2021. "Development of a Shipment Policy for Collection Centers," Mathematics, MDPI, vol. 9(12), pages 1-16, June.
    2. Prima Denny Sentia & Syaimak Abdul Shukor & Amelia Natasya Abdul Wahab & Muriati Mukhtar, 2023. "Logistic distribution in humanitarian supply chain management: a thematic literature review and future research," Annals of Operations Research, Springer, vol. 323(1), pages 175-201, April.
    3. Esteban Ogazón & Neale R. Smith & Angel Ruiz, 2024. "Assessing Different Two-Stage Stochastic Models for Optimizing Food Bank Networks’ Operations During Natural Disasters," Mathematics, MDPI, vol. 12(20), pages 1-24, October.
    4. Asadi, Amin & Nurre Pinkley, Sarah, 2021. "A stochastic scheduling, allocation, and inventory replenishment problem for battery swap stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    5. Romero-Silva, Rodrigo & Mujica Mota, Miguel, 2022. "Trade-offs in the landside operations of air cargo hubs: Horizontal cooperation and shipment consolidation policies considering capacitated nodes," Journal of Air Transport Management, Elsevier, vol. 103(C).
    6. Haliza Mohd Zahari & Noor Azmi Mohd Zainol & Ariffin Ismail, 2022. "Media Information, Flood Images, and Perceptions in Times of Flood," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    7. Shuyue Peng & Qinming Liu & Jiarui Hu, 2023. "Green Distribution Route Optimization of Medical Relief Supplies Based on Improved NSGA-II Algorithm under Dual-Uncertainty," Sustainability, MDPI, vol. 15(15), pages 1-22, August.
    8. Timperio, Giuseppe & Kundu, Tanmoy & Klumpp, Matthias & de Souza, Robert & Loh, Xiu Hui & Goh, Kelvin, 2022. "Beneficiary-centric decision support framework for enhanced resource coordination in humanitarian logistics: A case study from ASEAN," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    9. Seyed Reza Abazari & Fariborz Jolai & Amir Aghsami, 2022. "Designing a humanitarian relief network considering governmental and non-governmental operations under uncertainty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1430-1452, June.
    10. Li, Yifu & Zhou, Chenhao & Yuan, Peixue & Ngo, Thi Tu Anh, 2023. "Experience-based territory planning and driver assignment with predicted demand and driver present condition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    11. Andrii Galkin & Tibor Schlosser & Ivan Cardenas & Dominika Hodakova & Silvia Capayova, 2021. "Freight Demand and Supply Assessment for Implementation of Crowdsourcing Technology: A Case Study in Bratislava, Slovakia," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
    12. Luce Brotcorne & Guido Perboli & Mariangela Rosano & Qu Wei, 2019. "A Managerial Analysis of Urban Parcel Delivery: A Lean Business Approach," Sustainability, MDPI, vol. 11(12), pages 1-23, June.
    13. Suzuki, Yoshinori, 2020. "Impact of material convergence on last-mile distribution in humanitarian logistics," International Journal of Production Economics, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    2. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    3. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    4. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    5. Li, Xiaoping & Batta, Rajan & Kwon, Changhyun, 2017. "Effective and equitable supply of gasoline to impacted areas in the aftermath of a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 25-34.
    6. Lei Lei & Michael Pinedo & Lian Qi & Shengbin Wang & Jian Yang, 2015. "Personnel scheduling and supplies provisioning in emergency relief operations," Annals of Operations Research, Springer, vol. 235(1), pages 487-515, December.
    7. Serhan Duran & Marco A. Gutierrez & Pinar Keskinocak, 2011. "Pre-Positioning of Emergency Items for CARE International," Interfaces, INFORMS, vol. 41(3), pages 223-237, June.
    8. Yanbin Chang & Yongjia Song & Burak Eksioglu, 2022. "A stochastic look-ahead approach for hurricane relief logistics operations planning under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 1231-1263, December.
    9. Dilsu Binnaz Ozkapici & Mustafa Alp Ertem & Haluk Aygüneş, 2016. "Intermodal humanitarian logistics model based on maritime transportation in Istanbul," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 345-364, August.
    10. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    11. Jeong, Ho Young & Yu, David J. & Min, Byung-Cheol & Lee, Seokcheon, 2020. "The humanitarian flying warehouse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    12. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    13. Laura Laguna-Salvadó & Matthieu Lauras & Uche Okongwu & Tina Comes, 2019. "A multicriteria Master Planning DSS for a sustainable humanitarian supply chain," Annals of Operations Research, Springer, vol. 283(1), pages 1303-1343, December.
    14. Afshar, Abbas & Haghani, Ali, 2012. "Modeling integrated supply chain logistics in real-time large-scale disaster relief operations," Socio-Economic Planning Sciences, Elsevier, vol. 46(4), pages 327-338.
    15. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    16. Huang, Michael & Smilowitz, Karen R. & Balcik, Burcu, 2013. "A continuous approximation approach for assessment routing in disaster relief," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 20-41.
    17. Junhu Ruan & Xuping Wang & Yan Shi, 2014. "A Two-Stage Approach for Medical Supplies Intermodal Transportation in Large-Scale Disaster Responses," IJERPH, MDPI, vol. 11(11), pages 1-29, October.
    18. V. G. Venkatesh & Abraham Zhang & Eric Deakins & Sunil Luthra & S. Mangla, 2019. "A fuzzy AHP-TOPSIS approach to supply partner selection in continuous aid humanitarian supply chains," Annals of Operations Research, Springer, vol. 283(1), pages 1517-1550, December.
    19. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:106:y:2017:i:c:p:353-371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.