IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v223y2020ics0925527319303366.html
   My bibliography  Save this article

Impact of material convergence on last-mile distribution in humanitarian logistics

Author

Listed:
  • Suzuki, Yoshinori

Abstract

Material convergence (MC) in humanitarian logistics refers to the movement of relief supplies from donor sites to distribution centers in disaster areas, from which the final deliveries are made to survivors (last-mile distribution). We investigate how the choice of MC strategy (approach) affects the effectiveness of last-mile distribution. Specifically, we investigate the relative performance of the two frequently used MC approaches in terms of their ability to facilitate (propel) effective last-mile distribution. These two approaches are: (1) p–method (in which the most-urgent material always flows into disaster areas first) and (2) m–method (in which every shipment bound to disaster areas is comprised of a mix of urgent and less-urgent materials). We first analyze advantages and disadvantages of each approach from the theory perspective, and then perform numerical experiments to examine the specific conditions under which each approach performs most, or least, effectively. Results indicate that, in 83.3% of cases, the m–method (less widely used approach in practice) works more effectively than the p–method (more widely used approach).

Suggested Citation

  • Suzuki, Yoshinori, 2020. "Impact of material convergence on last-mile distribution in humanitarian logistics," International Journal of Production Economics, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:proeco:v:223:y:2020:i:c:s0925527319303366
    DOI: 10.1016/j.ijpe.2019.107515
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527319303366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2019.107515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erica Gralla & Jarrod Goentzel & Charles Fine, 2014. "Assessing Trade-offs among Multiple Objectives for Humanitarian Aid Delivery Using Expert Preferences," Production and Operations Management, Production and Operations Management Society, vol. 23(6), pages 978-989, June.
    2. Cook, Robert A. & Lodree, Emmett J., 2017. "Dispatching policies for last-mile distribution with stochastic supply and demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 353-371.
    3. Moreno, Alfredo & Alem, Douglas & Ferreira, Deisemara & Clark, Alistair, 2018. "An effective two-stage stochastic multi-trip location-transportation model with social concerns in relief supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1050-1071.
    4. Ann Melissa Campbell & Dieter Vandenbussche & William Hermann, 2008. "Routing for Relief Efforts," Transportation Science, INFORMS, vol. 42(2), pages 127-145, May.
    5. Panzar, John C & Willig, Robert D, 1981. "Economies of Scope," American Economic Review, American Economic Association, vol. 71(2), pages 268-272, May.
    6. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Dynamic formulation for humanitarian response operations incorporating multiple organisations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 83-98.
    7. Xianfeng Yang & Wei Hao & Yang Lu, 2018. "Inventory slack routing application in emergency logistics and relief distributions," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-18, June.
    8. Gutjahr, Walter J. & Nolz, Pamela C., 2016. "Multicriteria optimization in humanitarian aid," European Journal of Operational Research, Elsevier, vol. 252(2), pages 351-366.
    9. Maria Besiou & Alfonso J. Pedraza-Martinez & Luk N. Van Wassenhove, 2014. "Vehicle Supply Chains in Humanitarian Operations: Decentralization, Operational Mix, and Earmarked Funding," Production and Operations Management, Production and Operations Management Society, vol. 23(11), pages 1950-1965, November.
    10. Rivera-Royero, Daniel & Galindo, Gina & Yie-Pinedo, Ruben, 2016. "A dynamic model for disaster response considering prioritized demand points," Socio-Economic Planning Sciences, Elsevier, vol. 55(C), pages 59-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abderahman Rejeb & Karim Rejeb & Imen Zrelli, 2024. "Analyzing Barriers to Internet of Things (IoT) Adoption in Humanitarian Logistics: An ISM–DEMATEL Approach," Logistics, MDPI, vol. 8(2), pages 1-27, April.
    2. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    3. Alegoz, Mehmet & Acar, Muge & Salman, F. Sibel, 2024. "Value of sorting and recovery in post-disaster relief aid distribution," Omega, Elsevier, vol. 122(C).
    4. Fernandez Pernett, Stephanie & Amaya, Johanna & Arellana, Julián & Cantillo, Victor, 2022. "Questioning the implication of the utility-maximization assumption for the estimation of deprivation cost functions after disasters," International Journal of Production Economics, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    3. Ferrer, José M. & Martín-Campo, F. Javier & Ortuño, M. Teresa & Pedraza-Martínez, Alfonso J. & Tirado, Gregorio & Vitoriano, Begoña, 2018. "Multi-criteria optimization for last mile distribution of disaster relief aid: Test cases and applications," European Journal of Operational Research, Elsevier, vol. 269(2), pages 501-515.
    4. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    5. Gralla, Erica & Goentzel, Jarrod, 2018. "Humanitarian transportation planning: Evaluation of practice-based heuristics and recommendations for improvement," European Journal of Operational Research, Elsevier, vol. 269(2), pages 436-450.
    6. Vahdani, Behnam & Veysmoradi, D. & Mousavi, S.M. & Amiri, M., 2022. "Planning for relief distribution, victim evacuation, redistricting and service sharing under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    7. Yanjin He & Hosang Jung, 2018. "A Voting TOPSIS Approach for Determining the Priorities of Areas Damaged in Disasters," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    8. Noham, Reut & Tzur, Michal, 2018. "Designing humanitarian supply chains by incorporating actual post-disaster decisions," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1064-1077.
    9. Xuehong Gao, 2022. "A bi-level stochastic optimization model for multi-commodity rebalancing under uncertainty in disaster response," Annals of Operations Research, Springer, vol. 319(1), pages 115-148, December.
    10. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    11. CHEN, Helen S.Y., 2020. "Designing Sustainable Humanitarian Supply Chains," OSF Preprints m82ar, Center for Open Science.
    12. De Boeck, Kim & Decouttere, Catherine & Jónasson, Jónas Oddur & Vandaele, Nico, 2022. "Vaccine supply chains in resource-limited settings: Mitigating the impact of rainy season disruptions," European Journal of Operational Research, Elsevier, vol. 301(1), pages 300-317.
    13. Carland, Corinne & Goentzel, Jarrod & Montibeller, Gilberto, 2018. "Modeling the values of private sector agents in multi-echelon humanitarian supply chains," European Journal of Operational Research, Elsevier, vol. 269(2), pages 532-543.
    14. Fan, Yu & Shao, Jianfang & Wang, Xihui & Liang, Liang, 2024. "Contract design between relief organisations and private-sector vendors: A humanitarian logistics framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    15. Jónas Oddur Jónasson & Kamalini Ramdas & Alp Sungu, 2022. "Social impact operations at the global base of the pyramid," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4364-4378, December.
    16. Liu, Bingsheng & Sheu, Jiuh-Biing & Zhao, Xue & Chen, Yuan & Zhang, Wei, 2020. "Decision making on post-disaster rescue routing problems from the rescue efficiency perspective," European Journal of Operational Research, Elsevier, vol. 286(1), pages 321-335.
    17. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    18. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    19. Gossler, Timo & Wakolbinger, Tina & Nagurney, Anna & Daniele, Patrizia, 2019. "How to increase the impact of disaster relief: A study of transportation rates, framework agreements and product distribution," European Journal of Operational Research, Elsevier, vol. 274(1), pages 126-141.
    20. Ohad Eisenhandler & Michal Tzur, 2019. "The Humanitarian Pickup and Distribution Problem," Operations Research, INFORMS, vol. 67(1), pages 10-32, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:223:y:2020:i:c:s0925527319303366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.